1.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
2.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
3.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
4.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
5.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
6.Chemical constituents from the stems of Fritillaria unibracteata
Min LI ; Yahui MI ; Haimin KUAI ; Xiaolong HU ; Hao WANG
Journal of China Pharmaceutical University 2025;56(2):160-165
Chemical investigation of the stems of Fritillaria unibracteata P.K. Hsiao & K.C. Hsia resulted in the isolation of nine compounds, by means of silica gel column chromatography, and preparative HPLC. Based on spectroscopic and chemical evidence, these compounds were identified as: 27-hydroxychlorogenone (1), sieboldogenin (2), (3β, 25S)-spirost-5-ene-3,17,27-triol (3), laxogenin (4), tigogenone (5), cerevisterol (6), ergosterol peroxide (7), stigmaterol (8), and β-sitosterol (9). Compound 1 was a new compound, and compounds 2-9 were isolated from the stems of Fritillaria unibracteata for the first time. The inhibitory effects of compounds 1−9 on A549 cells were determined using the MTT method. The results show that compound 6 exhibits moderate inhibitory activity with an IC50 value of (14.16 ± 1.11) μmol/L.
7.Comparing the effectiveness of lithium disilicate glass ceramic onlays and full crowns in the restoration of cracked teeth that have undergone root canal therapy
ZHANG Hao ; TIAN Yuan ; LI Zhuangzhuang ; ZHANG Min ; ZHOU Haolin ; LIU Jianguo
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):639-649
Objective:
This study compares the effects of lithium disilicate glass ceramic onlays and full crowns in restoring cracked teeth that have undergone root canal therapy, providing a reference for the restoration method of cracked teeth that have undergone root canal therapy.
Methods:
This study was approved by the hospital’s medical ethics committee, and all patients signed the informed consent form. Patients with cracked teeth who underwent root canal treatment in our hospital from January 2022 to January 2023 were enrolled in this study. According to the inclusion and exclusion criteria, 60 patients were screened and enrolled, with a total of 60 affected teeth. The patients were divided into the onlay group and full crown group at a ratio of 2:3 using the random number table method. Lithium disilicate glass ceramic onlays were used to restore the affected teeth in the onlay group (24 cases), and lithium disilicate glass ceramic full crowns were used to restore the affected teeth in the full crown group (36 cases). At 3, 6, and 12 months after the repair, the restoration effect was evaluated and compared with the modified USPH Standard (the aesthetic, functional, and biological aspects of restorations). According to the biological definition of survival, survival analysis was conducted on the affected teeth in both groups.
Results:
At 3, 6, and 12 months after the repair, 85% of cases in the onlay group achieved grade A, while 80% of cases in the full crown group achieved grade A. There was no statistically significant difference in the restoration effects between the onlay group and the full crown group (P > 0.05). The 12-month survival rate of cracked teeth in the onlay group reached 95.65%, and the 12-month survival rate of cracked teeth in the full crown group reached 94.12%. There was no statistically significant difference in the retention of the affected teeth (P > 0.05). There was no significant effect of age, gender, tooth position, dentition, direction of cracks, the number of marginal ridges associated with cracks, or the type of restoration on the survival status of cracked teeth. (P > 0.05).
Conclusion
For cracked teeth that have undergone root canal therapy, the short-term effect of lithium disilicate glass ceramic onlays is comparable to that of full crowns, and both have good short-term effects. Onlays are less invasive and are expected to become an alternative restoration method to full crowns.
8.Healthcare-associated infection in a thoracic surgery ICU based on case mix index and relative weight of diagnosis-related groups
Hao JI ; Yuan LIU ; Jia YU ; Ai-Mi HUANG ; Jing ZHANG ; Li-Shan LI ; Xu-Min HOU
Chinese Journal of Infection Control 2024;23(1):78-85
Objective To explore the correlation between healthcare-associated infection(HAI)and partial inde-xes in the diagnosis-related groups(DRGs)of patients in thoracic surgery intensive care unit(ICU).Methods DRGs,case mix index(CMI),relative weight(RW),and HAI of patients in thoracic surgery ICU and four subspe-cialty departments(pulmonary surgery group,esophageal surgery group,mediastinum group[mainly thymic sur-gery],and trachea group)in a tertiary chest hospital in Shanghai from January to December 2022 were retrospec-tively analyzed and compared through DRGs index grouping.Results A total of 1 429 patients in the department of thoracic surgery ICU were analyzed,including 59 HAI cases,with a HAI rate of 4.13%.The incidences of HAI in pulmonary surgery group,esophageal surgery group,mediastinum group and trachea group were 3.74%(30/803),5.84%(25/428),1.27%(2/157)and 4.88%(2/41),respectively.There was no statistically significant differ-ence in the incidences of HAI among different subspecialty groups(P>0.05).A total of 35 DRGs were involved,with CMI of 2.75,3.41,2.35 and 1.25 in pulmonary surgery group,esophageal surgery group,mediastinum group and trachea group,respectively,and RW ranged from 0.53 to 12.62.In the pulmonary surgery group,inci-dence of HAI in male patients was higher than that in female patients.Higher RW score level was associated with higher incidence of HAI.Differences were all statistically significant(all P 0.05).Among patients in the esophageal surgery group,the age of HAI group was higher than that of the non-HAI group(P<0.05).Higher RW score level was associated with higher incidence of HAI(P<0.05).Among patients in the mediastinum sur-gery group,the age of patients in the infected group was higher than that in the non-infected group(P<0.05).Among the 59 HAI cases,31 were infected with MDROs.Conclusion Focusing on CMI and RW in the DRGs in-dex system,analyzing HAI from the perspectives of disease complexity and overall technical difficulties of medical services can provide reference for the precise management of HAI in the new era.
9.Chemical constituents from the leaves of Cyclocarya paliurus and their α-glucosidase inhibitory activities
Yong YANG ; Ting-Si GUO ; Min XIE ; Li-Hong TAN ; Wen-Chu LI ; Hao ZHENG ; Fei-Bing HUANG ; Yu-Pei YANG ; Wei WANG ; Yu-Qing JIAN
Chinese Traditional Patent Medicine 2024;46(3):834-842
AIM To study the chemical constituents from the leaves of Cyanocarya paliurus(Batalin)Iljinskaja and their α-glucosidase inhibitory activities.METHODS The 95%ethanol extract from the leaves of C.paliurus was isolated and purified by macroporous resin,silica gel,Sephadex LH-20,polyamide,C18 reversed-phase silica gel and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their α-glucosidase inhibitory activities were evaluated by PNPG.RESULTS Fifteen compounds were isolated and identified as cyclopaloside C(1),cyclopaloside A(2),juglanosides E(3),vaccinin A(4),ent-murin A(5),kaempferol 3-O-α-L-rhamnopyranoside(6),kaempferol-3-O-β-D-glucopyranoside(7),kaempferol-3-O-β-D-glucuronide methyl ester(8),kaempferol-3-O-β-D-glucuronide ethyl ester(9),kaempferol-3-O-β-D-glucuronide butyl ester(10),quercetin-3-O-α-L-rhamnopyranoside(11)quercetin-3-O-β-D-glucopyranoside(12),quercetin-3-O-β-D-galactopyranoside(13),quercetin-3-O-β-D-glucuronide butyl ester(14),dihydrokaempferol(15).The IC50 value of total extracts ihibited α-glucosidase was(1.83±0.04)μg/mL,and the IC50 values of compounds 1,4-5 were(29.48±1.86),(0.50±0.07),(0.71±0.07)μmol/L,respectively.CONCLUSION Compound 1 is a new tetrahydronaphthalene glycoside.Compounds 4-5,8-10 and 14 are isolated from the leaves of C.paliurus for the first time.Compounds 4-5 are relatively rare flavonoid lignans with potential inhibitory activities against α-glucosidase.
10.Development of the robotic digestive endoscope system and an experimental study on mechanistic model and living animals (with video)
Bingrong LIU ; Yili FU ; Kaipeng LIU ; Deliang LI ; Bo PAN ; Dan LIU ; Hao QIU ; Xiaocan JIA ; Jianping CHEN ; Jiyu ZHANG ; Mei WANG ; Fengdong LI ; Xiaopeng ZHANG ; Zongling KAN ; Jinghao LI ; Yuan GAO ; Min SU ; Quanqin XIE ; Jun YANG ; Yu LIU ; Lixia ZHAO
Chinese Journal of Digestive Endoscopy 2024;41(1):35-42
Objective:To develop a robotic digestive endoscope system (RDES) and to evaluate its feasibility, safety and control performance by experiments.Methods:The RDES was designed based on the master-slave control system, which consisted of 3 parts: the integrated endoscope, including a knob and button robotic control system integrated with a gastroscope; the robotic mechanical arm system, including the base and arm, as well as the endoscopic advance-retreat control device (force-feedback function was designed) and the endoscopic axial rotation control device; the control console, including a master manipulator and an image monitor. The operator sit far away from the endoscope and controlled the master manipulator to bend the end of the endoscope and to control advance, retract and rotation of the endoscope. The air supply, water supply, suction, figure fixing and motion scaling switching was realized by pressing buttons on the master manipulator. In the endoscopy experiments performed on live pigs, 5 physicians each were in the beginner and advanced groups. Each operator operated RDES and traditional endoscope (2 weeks interval) to perform porcine gastroscopy 6 times, comparing the examination time. In the experiment of endoscopic circle drawing on the inner wall of the simulated stomach model, each operator in the two groups operated RDES 1∶1 motion scaling, 5∶1 motion scaling and ordinary endoscope to complete endoscopic circle drawing 6 times, comparing the completion time, accuracy (i.e. trajectory deviation) and workload.Results:RDES was operated normally with good force feedback function. All porcine in vivo gastroscopies were successful, without mucosal injury, bleeding or perforation. In beginner and advanced groups, the examination time of both RDES and ordinary endoscopy tended to decrease as the number of operations increased, but the decrease in time was greater for operating RDES than for operating ordinary endoscope (beginner group P=0.033; advanced group P=0.023). In the beginner group, the operators operating RDES with 1∶1 motion scaling or 5∶1 motion scaling to complete endoscopic circle drawing had shorter completion time [1.68 (1.40, 2.17) min, 1.73 (1.47, 2.37) min VS 4.13 (2.27, 5.16) min, H=32.506, P<0.001], better trajectory deviation (0.50±0.11 mm, 0.46±0.11 mm VS 0.82±0.26 mm, F=38.999, P<0.001], and less workload [42.00 (30.00, 50.33) points, 43.33 (35.33, 54.00) points VS 52.67 (48.67, 63.33) points, H=20.056, P<0.001] than operating ordinary endoscope. In the advanced group, the operators operating RDES with 1∶1 or 5∶1 motion scaling to complete endoscopic circle drawing had longer completion time than operating ordinary endoscope [1.72 (1.37, 2.53) min, 1.57 (1.25, 2.58) min VS 1.15 (0.86, 1.58) min, H=13.233, P=0.001], but trajectory deviation [0.47 (0.13, 0.57) mm, 0.44 (0.39, 0.58) mm VS 0.52 (0.42, 0.59) mm, H=3.202, P=0.202] and workload (44.62±21.77 points, 41.24±12.57 points VS 44.71±17.92 points, F=0.369, P=0.693) were not different from those of the ordinary endoscope. Conclusion:The RDES enables remote control, greatly reducing the endoscopists' workload. Additionally, it gives full play to the cooperative motion function of the large and small endoscopic knobs, making the control more flexible. Finally, it increases motion scaling switching function to make the control of endoscope more flexible and more accurate. It is also easy for beginners to learn and master, and can shorten the training period. So it can provide the possibility of remote endoscopic control and fully automated robotic endoscope.


Result Analysis
Print
Save
E-mail