1.Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs.
Eun Kyung SHIN ; Hanseul PARK ; Ji Yoon NOH ; Kyung Min LIM ; Jin Ho CHUNG
Biomolecules & Therapeutics 2017;25(3):223-230
Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.
Blood Platelets*
;
Cytoskeleton*
;
Hemostasis
;
Thrombosis
;
Vascular System Injuries
;
Xenobiotics
2.First detection of West Nile virus in domestic pigeon in Korea.
C Yoon KIM ; Hanseul OH ; Juha SONG ; Moonsuk HUR ; Jae Hwa SUH ; Weon Hwa JHEONG ; Jong Taek KIM ; Hong Shik OH ; Jae Hak PARK
Journal of Veterinary Science 2016;17(4):587-589
West Nile virus (WNV) is a mosquito-borne zoonotic pathogen that has spread throughout Europe and the United States. Recently, WNV spread to East and Southeast Asia, and great efforts have been made in South Korea to prevent the spread of WNV from neighboring countries. In this study, we diagnosed the first case of WNV in pigeons (Columba livia domestica) residing in cities using a competitive enzyme-linked immunosorbent assay and confirmed it with nested reverse transcription polymerase chain reaction analysis and sequencing. This is the first report to provide convincing evidence that WNV is present within South Korea.
Asia, Southeastern
;
Columbidae*
;
Enzyme-Linked Immunosorbent Assay
;
Europe
;
Korea*
;
Polymerase Chain Reaction
;
Reverse Transcription
;
United States
;
West Nile virus*
3.Detection and Molecular Characterization of Cryptosporidium spp. from Wild Rodents and Insectivores in South Korea.
Juha SONG ; C Yoon KIM ; Seo Na CHANG ; Tamer Said ABDELKADER ; Juhee HAN ; Tae Hyun KIM ; Hanseul OH ; Ji Min LEE ; Dong Su KIM ; Jong Taek KIM ; Hong Shik OH ; Moonsuk HUR ; Jae Hwa SUH ; Jae Hak PARK
The Korean Journal of Parasitology 2015;53(6):737-743
In order to examine the prevalence of Cryptosporidium infection in wild rodents and insectivores of South Korea and to assess their potential role as a source of human cryptosporidiosis, a total of 199 wild rodents and insectivore specimens were collected from 10 regions of South Korea and screened for Cryptosporidium infection over a period of 2 years (2012-2013). A nested-PCR amplification of Cryptosporidium oocyst wall protein (COWP) gene fragment revealed an overall prevalence of 34.2% (68/199). The sequence analysis of 18S rRNA gene locus of Cryptosporidium was performed from the fecal and cecum samples that tested positive by COWP amplification PCR. As a result, we identified 4 species/genotypes; chipmunk genotype I, cervine genotype I, C. muris, and a new genotype which is closely related to the bear genotype. The new genotype isolated from 12 Apodemus agrarius and 2 Apodemus chejuensis was not previously identified as known species or genotype, and therefore, it is supposed to be a novel genotype. In addition, the host spectrum of Cryptosporidium was extended to A. agrarius and Crosidura lasiura, which had not been reported before. In this study, we found that the Korean wild rodents and insectivores were infected with various Cryptosporidium spp. with large intra-genotypic variationa, indicating that they may function as potential reservoirs transmitting zoonotic Cryptosporidium to livestock and humans.
Animals
;
Animals, Wild/*parasitology
;
Cryptosporidiosis/*parasitology
;
Cryptosporidium/classification/*genetics/*isolation & purification
;
Feces/parasitology
;
Genotype
;
Insectivora/*parasitology
;
Molecular Sequence Data
;
Murinae
;
Phylogeny
;
Republic of Korea
;
Rodent Diseases/*parasitology
4.Evaluation of fecal microbiomes associated with obesity in captive cynomolgus monkeys (Macaca fascicularis)
Bon Sang KOO ; Eun Ha HWANG ; Green KIM ; Hanseul OH ; Yeonghoon SON ; Dongho LEE ; Kyung Seob LIM ; Philyong KANG ; Sangil LEE ; Hwal Yong LEE ; Kang Jin JEONG ; Youngjeon LEE ; Seung Ho BAEK ; Chang Yeop JEON ; Sang Je PARK ; Young Hyun KIM ; Jae Won HUH ; Yeung Bae JIN ; Sun Uk KIM ; Sang Rae LEE ; Jung Joo HONG
Journal of Veterinary Science 2019;20(3):e19-
Microorganisms play important roles in obesity; however, the role of the gut microbiomes in obesity is controversial because of the inconsistent findings. This study investigated the gut microbiome communities in obese and lean groups of captive healthy cynomolgus monkeys reared under strict identical environmental conditions, including their diet. No significant differences in the relative abundance of Firmicutes, Bacteroidetes and Prevotella were observed between the obese and lean groups, but a significant difference in Spirochetes (p < 0.05) was noted. Microbial diversity and richness were similar, but highly variable results in microbial composition, diversity, and richness were observed in individuals, irrespective of their state of obesity. Distinct clustering between the groups was not observed by principal coordinate analysis using an unweighted pair group method. Higher sharedness values (95.81% ± 2.28% at the genus level, and 79.54% ± 5.88% at the species level) were identified among individual monkeys. This paper reports the association between the gut microbiome and obesity in captive non-human primate models reared under controlled environments. The relative proportion of Firmicutes and Bacteroidetes as well as the microbial diversity known to affect obesity were similar in the obese and lean groups of monkeys reared under identical conditions. Therefore, obesity-associated microbial changes reported previously appear to be associated directly with environmental factors, particularly diet, rather than obesity.
Bacteroidetes
;
Diet
;
Environment, Controlled
;
Firmicutes
;
Gastrointestinal Microbiome
;
Haplorhini
;
Macaca fascicularis
;
Methods
;
Microbiota
;
Obesity
;
Prevotella
;
Primates
;
Spirochaetales