1.Overall and linked blood pressure variabilities in the first 24 hours and mortality after spontaneous intracerebral hemorrhage: a retrospective study of 1,036 patients
Hangyul CHO ; Taehoon KIM ; Younsuk LEE ; Dawoon KIM ; Hansu BAE
Anesthesia and Pain Medicine 2024;19(4):302-309
This study aims to establish the individual contributions of blood pressure variability (BPV) indexes, categorized into overall and linked variability, to mortality following intracerebral hemorrhage (ICH) by examining the risk factors. Methods: Patients with spontaneous ICH (n = 1,036) were identified with valid blood pressures (BP) from the first 24-h systolic BP records in the Medical Information Mart for Intensive Care IV version 2.2 database (MIMIC IV). Information on the baseline characteristics, including age, sex, initial Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) scores, ICH location, Charlson comorbidity index score, and presence of diabetes with or without complications, were collected. Three indexes of BPV—range, standard deviation (SD), and generalized BPV (GBPV)—were calculated using the first 24-h systolic BPs. An automated stepwise variable-selection procedure was used to develop the final logistic model for predicting in-hospital mortality. Results: Out of 1,036 patients, 802 (77.4%) survived and were discharged after spontaneous ICH. Factors associated with mortality included age; male sex; ICH in the brainstem, ventricle, or multiple locations; low GCS score (< 9); high NIHSS score (> 20); and diabetes with complications. Mean systolic BP, SD, and GBPV were also linked to mortality. Higher GBPV notably increased the risk of in-hospital death, with an odds ratio of 3.21 (95% confidence interval, 2.10 to 4.97) for every + 10 mmHg/h change in GBPV. Conclusions: This study underscores the additional impact of GBPV, herein linked to BPV, on mortality following ICH, providing further insights into the management of blood pressure in the early stages of ICH treatment.
2.Overall and linked blood pressure variabilities in the first 24 hours and mortality after spontaneous intracerebral hemorrhage: a retrospective study of 1,036 patients
Hangyul CHO ; Taehoon KIM ; Younsuk LEE ; Dawoon KIM ; Hansu BAE
Anesthesia and Pain Medicine 2024;19(4):302-309
This study aims to establish the individual contributions of blood pressure variability (BPV) indexes, categorized into overall and linked variability, to mortality following intracerebral hemorrhage (ICH) by examining the risk factors. Methods: Patients with spontaneous ICH (n = 1,036) were identified with valid blood pressures (BP) from the first 24-h systolic BP records in the Medical Information Mart for Intensive Care IV version 2.2 database (MIMIC IV). Information on the baseline characteristics, including age, sex, initial Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) scores, ICH location, Charlson comorbidity index score, and presence of diabetes with or without complications, were collected. Three indexes of BPV—range, standard deviation (SD), and generalized BPV (GBPV)—were calculated using the first 24-h systolic BPs. An automated stepwise variable-selection procedure was used to develop the final logistic model for predicting in-hospital mortality. Results: Out of 1,036 patients, 802 (77.4%) survived and were discharged after spontaneous ICH. Factors associated with mortality included age; male sex; ICH in the brainstem, ventricle, or multiple locations; low GCS score (< 9); high NIHSS score (> 20); and diabetes with complications. Mean systolic BP, SD, and GBPV were also linked to mortality. Higher GBPV notably increased the risk of in-hospital death, with an odds ratio of 3.21 (95% confidence interval, 2.10 to 4.97) for every + 10 mmHg/h change in GBPV. Conclusions: This study underscores the additional impact of GBPV, herein linked to BPV, on mortality following ICH, providing further insights into the management of blood pressure in the early stages of ICH treatment.
3.Overall and linked blood pressure variabilities in the first 24 hours and mortality after spontaneous intracerebral hemorrhage: a retrospective study of 1,036 patients
Hangyul CHO ; Taehoon KIM ; Younsuk LEE ; Dawoon KIM ; Hansu BAE
Anesthesia and Pain Medicine 2024;19(4):302-309
This study aims to establish the individual contributions of blood pressure variability (BPV) indexes, categorized into overall and linked variability, to mortality following intracerebral hemorrhage (ICH) by examining the risk factors. Methods: Patients with spontaneous ICH (n = 1,036) were identified with valid blood pressures (BP) from the first 24-h systolic BP records in the Medical Information Mart for Intensive Care IV version 2.2 database (MIMIC IV). Information on the baseline characteristics, including age, sex, initial Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) scores, ICH location, Charlson comorbidity index score, and presence of diabetes with or without complications, were collected. Three indexes of BPV—range, standard deviation (SD), and generalized BPV (GBPV)—were calculated using the first 24-h systolic BPs. An automated stepwise variable-selection procedure was used to develop the final logistic model for predicting in-hospital mortality. Results: Out of 1,036 patients, 802 (77.4%) survived and were discharged after spontaneous ICH. Factors associated with mortality included age; male sex; ICH in the brainstem, ventricle, or multiple locations; low GCS score (< 9); high NIHSS score (> 20); and diabetes with complications. Mean systolic BP, SD, and GBPV were also linked to mortality. Higher GBPV notably increased the risk of in-hospital death, with an odds ratio of 3.21 (95% confidence interval, 2.10 to 4.97) for every + 10 mmHg/h change in GBPV. Conclusions: This study underscores the additional impact of GBPV, herein linked to BPV, on mortality following ICH, providing further insights into the management of blood pressure in the early stages of ICH treatment.
4.Overall and linked blood pressure variabilities in the first 24 hours and mortality after spontaneous intracerebral hemorrhage: a retrospective study of 1,036 patients
Hangyul CHO ; Taehoon KIM ; Younsuk LEE ; Dawoon KIM ; Hansu BAE
Anesthesia and Pain Medicine 2024;19(4):302-309
This study aims to establish the individual contributions of blood pressure variability (BPV) indexes, categorized into overall and linked variability, to mortality following intracerebral hemorrhage (ICH) by examining the risk factors. Methods: Patients with spontaneous ICH (n = 1,036) were identified with valid blood pressures (BP) from the first 24-h systolic BP records in the Medical Information Mart for Intensive Care IV version 2.2 database (MIMIC IV). Information on the baseline characteristics, including age, sex, initial Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) scores, ICH location, Charlson comorbidity index score, and presence of diabetes with or without complications, were collected. Three indexes of BPV—range, standard deviation (SD), and generalized BPV (GBPV)—were calculated using the first 24-h systolic BPs. An automated stepwise variable-selection procedure was used to develop the final logistic model for predicting in-hospital mortality. Results: Out of 1,036 patients, 802 (77.4%) survived and were discharged after spontaneous ICH. Factors associated with mortality included age; male sex; ICH in the brainstem, ventricle, or multiple locations; low GCS score (< 9); high NIHSS score (> 20); and diabetes with complications. Mean systolic BP, SD, and GBPV were also linked to mortality. Higher GBPV notably increased the risk of in-hospital death, with an odds ratio of 3.21 (95% confidence interval, 2.10 to 4.97) for every + 10 mmHg/h change in GBPV. Conclusions: This study underscores the additional impact of GBPV, herein linked to BPV, on mortality following ICH, providing further insights into the management of blood pressure in the early stages of ICH treatment.
5.Overall and linked blood pressure variabilities in the first 24 hours and mortality after spontaneous intracerebral hemorrhage: a retrospective study of 1,036 patients
Hangyul CHO ; Taehoon KIM ; Younsuk LEE ; Dawoon KIM ; Hansu BAE
Anesthesia and Pain Medicine 2024;19(4):302-309
This study aims to establish the individual contributions of blood pressure variability (BPV) indexes, categorized into overall and linked variability, to mortality following intracerebral hemorrhage (ICH) by examining the risk factors. Methods: Patients with spontaneous ICH (n = 1,036) were identified with valid blood pressures (BP) from the first 24-h systolic BP records in the Medical Information Mart for Intensive Care IV version 2.2 database (MIMIC IV). Information on the baseline characteristics, including age, sex, initial Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) scores, ICH location, Charlson comorbidity index score, and presence of diabetes with or without complications, were collected. Three indexes of BPV—range, standard deviation (SD), and generalized BPV (GBPV)—were calculated using the first 24-h systolic BPs. An automated stepwise variable-selection procedure was used to develop the final logistic model for predicting in-hospital mortality. Results: Out of 1,036 patients, 802 (77.4%) survived and were discharged after spontaneous ICH. Factors associated with mortality included age; male sex; ICH in the brainstem, ventricle, or multiple locations; low GCS score (< 9); high NIHSS score (> 20); and diabetes with complications. Mean systolic BP, SD, and GBPV were also linked to mortality. Higher GBPV notably increased the risk of in-hospital death, with an odds ratio of 3.21 (95% confidence interval, 2.10 to 4.97) for every + 10 mmHg/h change in GBPV. Conclusions: This study underscores the additional impact of GBPV, herein linked to BPV, on mortality following ICH, providing further insights into the management of blood pressure in the early stages of ICH treatment.
6.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
7.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
8.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
9.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
10.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.