1.Research progress on energy metabolism regulation in stored platelets
Chengyan GAO ; Can LOU ; Hang LEI ; Xiaohong CAI
Chinese Journal of Blood Transfusion 2025;38(1):130-135
In maintaining normal function and activation processes, glycolysis, lipid metabolism, and amino acid metabolism play key roles in the energy demand of platelets. In the resting state, platelets primarily rely on glycolysis and aerobic oxidation to generate energy. Upon activation, platelets preferentially utilize glycolysis, as it can more rapidly provide the required ATP. In addition to glycolysis, platelets can also utilize glycogen and fatty acids as additional energy sources. The ATP provided by fatty acid oxidation is crucial for platelet activation. Additionally, during platelet storage, distinctive changes in energy metabolism occur. In the early stages of storage, platelets primarily rely on glycolysis and the pentose phosphate pathway (PPP) to generate energy. In the mid-storage phase, there is an increase in tricarboxylic acid cycle (TCA) metabolism. In the later stages of storage, cellular metabolism gradually declines. The regulation and flexibility of these metabolic pathways play a critical role in the survival and function of platelets in different states.
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Research on the molecular mechanisms of ABO subtypes based on first-generation and third-generation sequencing technologies
Chengyan GAO ; Hui ZHANG ; Hang LEI ; Can LOU ; Xiaohong CAI
Chinese Journal of Blood Transfusion 2025;38(7):928-933
Objective: To accurately determine the ABO blood group of samples exhibiting forward/reverse grouping discrepancies by combining first-generation (Sanger) and third-generation (long-read) sequencing technologies. Methods: Five samples with ABO forward/reverse grouping discrepancies were selected. Serological testing was conducted using automated blood typing instruments and the tube method. Genotyping was conducted using both Sanger and long-read sequencing technologies. Results: Sanger sequencing identified specific genetic mutations in two samples, with genotypes of ABO
BA. 04/ABO
O.01.01 and ABO
B3.05/ABO
O.01.02. Further analysis with long-read sequencing revealed specific mutations in the +5.8kb region of intron 1 (c.28+5885C>T and c.28+5861T>G) in three samples where mutations were not detected by Sanger sequencing. These mutations affect the expression of the ABO antigens and are likely responsible for the ABO subgroup phenotypes. Conclusion: The integration of Sanger and long-read sequencing technologies effectively identifies genetic variations causing ABO subtypes, providing a scientific basis for enhancing clinical transfusion safety and ensuring accurate blood group determination.
4.Research on the molecular mechanisms of ABO subtypes based on first-generation and third-generation sequencing technologies
Chengyan GAO ; Hui ZHANG ; Hang LEI ; Can LOU ; Xiaohong CAI
Chinese Journal of Blood Transfusion 2025;38(7):928-933
Objective: To accurately determine the ABO blood group of samples exhibiting forward/reverse grouping discrepancies by combining first-generation (Sanger) and third-generation (long-read) sequencing technologies. Methods: Five samples with ABO forward/reverse grouping discrepancies were selected. Serological testing was conducted using automated blood typing instruments and the tube method. Genotyping was conducted using both Sanger and long-read sequencing technologies. Results: Sanger sequencing identified specific genetic mutations in two samples, with genotypes of ABO
BA. 04/ABO
O.01.01 and ABO
B3.05/ABO
O.01.02. Further analysis with long-read sequencing revealed specific mutations in the +5.8kb region of intron 1 (c.28+5885C>T and c.28+5861T>G) in three samples where mutations were not detected by Sanger sequencing. These mutations affect the expression of the ABO antigens and are likely responsible for the ABO subgroup phenotypes. Conclusion: The integration of Sanger and long-read sequencing technologies effectively identifies genetic variations causing ABO subtypes, providing a scientific basis for enhancing clinical transfusion safety and ensuring accurate blood group determination.
5.Effect of Fushen Decoction on 5-HT system and GABA expression in mouse model of PCPA-induced insomnia.
Jun-Hang HU ; Fei XU ; Tong-Sheng WANG ; Hua-Sheng PENG ; Li LI
China Journal of Chinese Materia Medica 2025;50(6):1581-1591
This study aims to observe the mind-tranquilizing effect of Fushen Decoction on mice and investigate its effects on the 5-hydroxytryptamine(5-HT) system and γ-aminobutyric acid(GABA) in the brain of the mouse model of 4-chloro-DL-phenylalanine(PCPA)-induced insomnia. ICR mice were administrated with coffee(1 g·kg~(-1)) for 3 days, and the effects of Fushen Decoction(10, 20, and 40 g·kg~(-1)) on the autonomic activities of normal mice and coffee-treated mice were observed. Furthermore, the effects of Fushen Decoction on the autonomic activity and sleep induced by a suprathreshold dose of pentobarbital sodium in the mouse model of PCPA(350 mg·kg~(-1) for 3 consecutive days)-induced insomnia were observed. The levels of tryptophan hydroxylase(TPH), 5-hydroxytryptophan(5-HTP), and 5-HT in the serum, as well as those of 5-HTP and 5-HT in the brain stem, hippocampus, and cortex, were measured by enzyme-linked immunosorbent assay(ELISA). The fluorescence intensity of 5-HT in the raphe nucleus, hippocampus, and cortex was measured by the immunofluorescence method. The protein levels of tryptophan hydroxylase-2(TPH2) and 5-HT_(1A) receptor(5-HT_(1A)R) in the brain stem, hippocampus, and cortex were measured by Western blot. The levels of GABA in the hypothalamus, hippocampus, and cortex were measured by ELISA and immunohistochemistry methods. The results showed that Fushen Decoction(20, 40 g·kg~(-1)) reduced the number of autonomous activities in normal mice, coffee-treated mice, and the mouse model of PCPA-induced insomnia, and prolonged the duration of sleep induced by a suprathreshold dose of pentobarbital sodium in the mouse model. Fushen Decoction(20, 40 g·kg~(-1)) elevated the levels of TPH, 5-HTP, and 5-HT in the serum, and TPH2, 5-HTP, 5-HT, and 5-HT_(1A)R in the brain stem, hippocampus, and cortex, and up-regulated GABA expression in the hypothalamus, cortex, and hippocampus of the mouse model of PCPA-induced insomnia. In conclusion, Fushen Decoction(20, 40 g·kg~(-1)) exerted a mind-tranquilizing effect on mice by up-regulating the expression of TPH2, enhancing the 5-HT system, and elevating the GABA level in the brain.
Animals
;
Serotonin/genetics*
;
Sleep Initiation and Maintenance Disorders/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Mice, Inbred ICR
;
gamma-Aminobutyric Acid/genetics*
;
Disease Models, Animal
;
Fenclonine/adverse effects*
;
Tryptophan Hydroxylase/genetics*
;
Brain/metabolism*
;
Sleep/drug effects*
;
Humans
;
5-Hydroxytryptophan/metabolism*
6.Non-pharmacological interventions in chronic prostatitis/chronic pelvic pain syndrome: A network meta-analysis.
Xiao-Hui WEI ; Meng-Yao MA ; Hang SU ; Tong HU ; Yu-Xin ZHAO ; Xing-Chao LIU ; Hong-Yan BI
National Journal of Andrology 2025;31(3):234-245
OBJECTIVE:
To evaluate the efficacy of shockwave therapy, acupuncture, hyperthermia, biofeedback therapy, electrical nerve stimulation, magnetotherapy and ultrasound therapy in the treatment of chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS), and to provide evidence-based support for clinical decision-making.
METHODS:
Two researchers independently searched PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang, VIP and Chinese Biomedical Literature databases for randomized controlled trials(RCTs) on the effects of different interventions on CP/CPPS from the establishment of the databases to August 2024. We evaluated the quality of the included literature and extracted the relevant data according to the Cochrane Handbook for Systematic Reviews of Interventions, followed by network meta-analysis using Revman 5.3, R 4.33 and Stata17 software.
RESULTS:
A total of 25 RCTs involving 1 794 cases were included. The results of network meta-analysis showed that electrical nerve stimulation, shockwave therapy, biofeedback therapy, magnetotherapy, ultrasound therapy and acupuncture were significantly superior to conventional medication and placebo in the total NIH-CPSI scores(P< 0.05), and so were electrical nerve stimulation and shockwave therapy to acupuncture and hyperthermia(P< 0.05), magnetic therapy to hyperthermia, and ultrasound therapy to placebo(P< 0.05). Shockwave therapy, biofeedback therapy, electrical nerve stimulation, magnetotherapy and ultrasound therapy achieved remarkably better clinical efficacy than conventional medication and placebo in the treatment of CP/CPPS, and so did shockwave therapy than electrical nerve stimulation, hyperthermia, ultrasonic therapy, magnetotherapy and acupuncture.
CONCLUSION
For the treatment of CP/CPPS, electrical nerve stimulation is advantageous over the other interventions in improving total NIH-CPSI scores, and shockwave therapy is advantageous in relieving pain symptoms and clinical efficacy. This conclusion, however, needs to be further verified by more high-quality clinical studies.
Humans
;
Acupuncture Therapy
;
Biofeedback, Psychology
;
Chronic Disease
;
Electric Stimulation Therapy
;
Extracorporeal Shockwave Therapy
;
Magnetic Field Therapy
;
Pelvic Pain/therapy*
;
Prostatitis/therapy*
;
Randomized Controlled Trials as Topic
;
Ultrasonic Therapy
7.FtsZ as a novel target for antibiotics development: Promises and challenges.
Ming-Wei WANG ; Kaini HANG ; Wei HAN ; Xin LI ; Qingtong ZHOU ; Dehua YANG
Acta Pharmaceutica Sinica B 2025;15(8):3978-3996
Filamenting temperature-sensitive mutant Z (FtsZ), a protein essential for bacterial cell division, is highly conserved across bacterial species but absent in humans, positioning it as a strategic target for the development of antibiotics. Significant efforts to identify FtsZ inhibitors-via biochemical assays (e.g., GTPase activity) and cellular approaches (e.g., immunofluorescence)-have yielded over 100 natural products and synthetic compounds, whose cheminformatics clustering underscores a limited chemical diversity among the current scaffolds. Structural studies, including X-ray crystallography and cryo-electron microscopy, have resolved 97 FtsZ structures revealing conserved polymerization mechanisms and conformational plasticity, as exemplified by extremophile adaptations (e.g., Shewanella benthica from the high-pressure environment of the Mariana Trench's Challenger Deep). However, clinical translation is hindered by weak binding affinities, inhibitory inefficacy, dynamic conformational flexibility, and evolving drug resistance linked to FtsZ's functional plasticity. To address these challenges, future efforts should be directed to resolve transient assembly intermediates, leveraging machine learning with high-throughput screening, and integrating structural biology with pharmacokinetic optimization. Multidisciplinary strategies combining these approaches hold promise for translating FtsZ-focused research into clinically viable therapies, addressing the critical unmet need posed by antibiotics resistance.
8.Bacteroi des fragilis-derived succinic acid promotes the degradation of uric acid by inhibiting hepatic AMPD2: Insight into how plant-based berberine ameliorates hyperuricemia.
Libin PAN ; Ru FENG ; Jiachun HU ; Hang YU ; Qian TONG ; Xinyu YANG ; Jianye SONG ; Hui XU ; Mengliang YE ; Zhengwei ZHANG ; Jie FU ; Haojian ZHANG ; Jinyue LU ; Zhao ZHAI ; Jingyue WANG ; Yi ZHAO ; Hengtong ZUO ; Xiang HUI ; Jiandong JIANG ; Yan WANG
Acta Pharmaceutica Sinica B 2025;15(10):5244-5260
In recent decades, the prevalence of hyperuricemia and gout has increased dramatically due to lifestyle changes. The drugs currently recommended for hyperuricemia are associated with adverse reactions that limit their clinical use. In this study, we report that berberine (BBR) is an effective drug candidate for the treatment of hyperuricemia, with its mechanism potentially involving the modulation of gut microbiota and its metabolite, succinic acid. BBR has demonstrated good therapeutic effects in both acute and chronic animal models of hyperuricemia. In a clinical trial, oral administration of BBR for 6 months reduced blood uric acid levels in 22 participants by modulating the gut microbiota, which led to an increase in the abundance of Bacteroides and a decrease in Clostridium sensu stricto_1. Furthermore, Bacteroides fragilis was transplanted into ICR mice, and the results showed that Bacteroides fragilis exerted a therapeutic effect on uric acid similar to that of BBR. Notably, succinic acid, a metabolite of Bacteroides, significantly reduced uric acid levels. Subsequent cell and animal experiments revealed that the intestinal metabolite, succinic acid, regulated the upstream uric acid synthesis pathway in the liver by inhibiting adenosine monophosphate deaminase 2 (AMPD2), an enzyme responsible for converting adenosine monophosphate (AMP) to inosine monophosphate (IMP). This inhibition resulted in a decrease in IMP levels and an increase in phosphate levels. The reduction in IMP led to a decreased downstream production of hypoxanthine, xanthine, and uric acid. BBR also demonstrated excellent renoprotective effects, improving nephropathy associated with hyperuricemia. In summary, BBR has the potential to be an effective treatment for hyperuricemia through the gut-liver axis.
9.From Correlation to Causation: Understanding Episodic Memory Networks.
Ahsan KHAN ; Jing LIU ; Maité CRESPO-GARCÍA ; Kai YUAN ; Cheng-Peng HU ; Ziyin REN ; Chun-Hang Eden TI ; Desmond J OATHES ; Raymond Kai-Yu TONG
Neuroscience Bulletin 2025;41(8):1463-1486
Episodic memory, our ability to recall past experiences, is supported by structures in the medial temporal lobe (MTL) particularly the hippocampus, and its interactions with fronto-parietal brain regions. Understanding how these brain regions coordinate to encode, consolidate, and retrieve episodic memories remains a fundamental question in cognitive neuroscience. Non-invasive brain stimulation (NIBS) methods, especially transcranial magnetic stimulation (TMS), have advanced episodic memory research beyond traditional lesion studies and neuroimaging by enabling causal investigations through targeted magnetic stimulation to specific brain regions. This review begins by delineating the evolving understanding of episodic memory from both psychological and neurobiological perspectives and discusses the brain networks supporting episodic memory processes. Then, we review studies that employed TMS to modulate episodic memory, with the aim of identifying potential cortical regions that could be used as stimulation sites to modulate episodic memory networks. We conclude with the implications and prospects of using NIBS to understand episodic memory mechanisms.
Humans
;
Memory, Episodic
;
Transcranial Magnetic Stimulation/methods*
;
Brain/physiology*
;
Nerve Net/physiology*
;
Mental Recall/physiology*
;
Neural Pathways/physiology*
10.Correlation between electronic cross-matching and the detection rate of unexpected antibodies in red blood cells
Can LOU ; Hang LEI ; Yuqing WANG ; Songsong GONG ; Xuefeng WANG ; Wei ZOU ; Xiaohong CAI ; Shikai CHEN
Chinese Journal of Blood Transfusion 2025;38(10):1370-1376
Objective: To analyze changes in Rh system antibodies among antibody-positive patients and evaluate the efficacy of Rh phenotype-matched electronic cross-matching (hereinafter referred to as Rh-ECM). Methods: A retrospective analysis was performed on antibody screening data of 48 254 patients in our hospital from December 2023 to March 2025. The antibody screening results were compared between the pre-application phase (n=46 346, control group) and post-application phase (n=48 254, experimental group) of Rh-ECM technology, focusing on the changes in the proportion of Rh system antibodies, with statistical analysis conducted using SPSS 26.0 software. Meanwhile, the initial and re-examination situations of Rh antibody in the antibody screening of approximately 20 000 person-times each before (June 2019 to June 2020, n=21 048) and after (July 2020 to April 2021, n=20 965) of Rh-ECM were evaluated to explore the influence of Rh-ECM on the detection rate of Rh antibody. Results: After Rh-ECM implementation, 345 positive cases (0.7%) (345/48 254) were detected among 48 254 patients, primarily consisting of mns system antibodies (128 cases, 37.1%) (128/345) and rh system antibodies (95 cases, 27.5%) (95/345). Before Rh-ECM implementation, 199 positive cases (0.4%) (199/46 346) were detected among 46 346 patients, with rh system antibodies accounting for 97 cases (48.7%) (97/199). The difference in the composition ratio of Rh antibodies between the two phases was statistically significant (P<0.001), and the relative risk ratio of Rh antibody detection after Rh-ECM implementation was 56.5% compared to before. Another set of data analysis showed that before Rh-ECM, there were 37 cases with initial positive results and 8 cases with re-examination positive results; after Rh-ECM, these numbers were 44 and 2 respectively There was a statistically significant difference in the re-examination positive rate of Rh antibodies between the two stages (P<0.05). Conclusion: The implementation of Rh-ECM technology significantly reduced the proportion of Rh system antibodies among patients with positive antibody screening results. This suggests that Rh-ECM can effectively reduce the detection rate of Rh antibodies, which may be related to the reduced risk of antibody production due to Rh-matched transfusion, thus improving transfusion safety. Therefore, Rh-ECM is worthy of broader promotion in clinical transfusion testing.

Result Analysis
Print
Save
E-mail