1.Molecular Crosstalk Mechanisms of Shoutai Wan and Juyuan Jian on Maternal-fetal Interface Subcellular Clusters in CBA/J×DBA/2 Recurrent Pregnancy Loss Model
Jingxin GAO ; Qiuping CHEN ; Xiaoyan ZHENG ; Pengfei ZENG ; Rui ZHOU ; Yancai TANG ; Qian ZENG ; Wenli GUO ; Jinzhu HUANG ; Weijun DING ; Linwen DENG ; Hang ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):70-87
ObjectiveTo systematically compare the differential regulation of the maternal-fetal interface cell lineages and communication networks in the CBA/J×DBA/2 mouse model of recurrent pregnancy loss (RPL) by the two classic therapeutic methods-tonifying the kidney to stabilize the fetus and invigorating the spleen to stabilize the fetus (Shoutai Wan, Juyuan Jian)-of traditional Chinese medicine (TCM) at the single-cell resolution and clarify their modern scientific connotations. MethodsFemale non-pregnant CBA/J mice were caged with male BALB/c (blank group) and DBA/2 (modeling group) mice separately. Pregnant mice in the modeling group were randomly grouped as follows: high/low-dose Shoutai Wan, high/low-dose Juyuan Jian, model (RPL), and positive control (dydrogesterone), with 10 mice in each group. Starting from the day after the detection of the vaginal plug, mice were administrated with drugs or an equal volume of normal saline by gavage for 10 consecutive days. After the intervention, the following indicators were measured. ① Macroscopic evaluation: general conditions, uterine wet weight, embryo loss rate, four coagulation parameters [prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and thrombin time (TT)], and peripheral blood estradiol (E2) and progesterone (Pg) levels. The decidua with embryos was stained with hematoxylin-eosin (HE) and evaluated by transmission electron microscopy (TEM). The expression of B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), angiotensin Ⅱ (AngⅡ), matrix metalloproteinase-2 (MMP-2), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), CXC chemokine ligand 12 (CXCL12), and microtubule-associated protein 1 light chain 3 homolog (LC3)Ⅰ/Ⅱ was quantified by Western blot. ② Mechanism analysis at the single-cell level: The decidua with embryos from the blank, model, high-dose Shoutai Wan, and high-dose Juyuan Jian groups (6 mice per group, with 3 single-cell samples per group, totaling 24 mice) were analyzed by the BD Rhapsody™ platform, and the whole-cell atlas was drawn by uniform manifold approximation and projection (UMAP) dimensionality reduction clustering combined with the single-cell mouse cell atlas (scMCA). The differentially expressed genes (DEGs) and cell interaction networks were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and CellChat, and the protein-protein interaction (PPI) map of subtype cells was constructed. The CytoTRACE pseudo-temporal analysis was performed to explore the developmental trajectories of core immune cells (natural killer cells, NK cells) from maternal and fetal sources. Results① Pathological and Western blot results indicated that compared with the blank group, the RPL group showed an increase in the embryo loss rate (P<0.01), down-regulated expression of Bcl-2, LIF, MMP-2, and Vegf in the decidua with embryos (P<0.05), up-regulated protein levels of CXCL-12, AngⅡ, and IL-6 (P<0.05), blocked angiogenesis, apoptosis-inflammation imbalance, and coagulation dysfunction. Both prescriptions dose-dependently reduced the abortion rate and restored the angiogenesis-inflammation balance, and Shoutai pill showed superior performance in restoring the E2 level to the Pg level (P<0.05). ② Single-cell transcriptome analysis indicated that compared with the blank group, the RPL group showed differences in multiple key cell populations such as decidual cells, trophoblast cells, endothelial cells, erythroblasts, NK cells, and macrophages at the maternal-fetal interface. Immunity and angiogenesis were the key links in RPL. Compared with the RPL group, high-dose Shoutai Wan reversed the changes of NK cells in the embryonic layer (upregulating the mRNA levels of 17 genes and downregulating the mRNA levels of 29 genes) and macrophages (upregulating the mRNA levels of 117 genes and downregulating the mRNA levels of 53 genes) through the regulation of gene expression. High-dose Shoutai pill regulated the immune cells to affect unfolded proteins, cell adhesion, and programmed cell death, thereby promoting decidualization and angiogenesis and modulating embryo-membrane development. High-dose Juyuan Jian regulated the key subgroups of NK cells (up-regulating the mRNA levels of 9 genes and down-regulating the mRNA levels of 17 genes) and macrophages (up-regulating the mRNA levels of 110 genes and down-regulating the mRNA levels of 81 genes), which affected decidual inflammation and apoptosis and intervened in glycolysis. ③ The pseudo-temporal analysis and communication network indicated that the communication frequency of the RPL group decreased. High-dose Shoutai Wan restored maternal-fetal tolerance through pathways such as NKG2D, CDH5, GDF, and FASLG. High-dose Juyuan Jian enhanced the IL-6/LIFR/JAK/signal transducer and activator of transcription 3 (STAT3) and desmosome/SEMA6/tumor necrosis factor-like weak inducer of apoptosis (TWEAK) signaling to improve endometrial receptivity. The RPL group showed an increased proportion of toxic dNK7, a decreased proportion of reparative dNK4, and blocked embryo fNK1. High-dose Shoutai Wan down-regulated dNK7 and up-regulated dNK4. High-dose Juyuan Jian inhibited the terminal differentiation of dNK7 and up-regulated LILRB1, thus restoring the balance of cytotoxicity and repair. ConclusionBoth the kidney-tonifying and spleen-invigorating methods are effective in treating RPL. NK and macrophages are the key immune cells in the interaction between the embryo and the membrane. The kidney-tonifying method (Shoutai Wan) has an advantage in regulating the phenotypes of unfolded protein, cell adhesion, and programmed cell death, and shows expression characteristics closer to the physiological state in the regulation of NKG2D and CDH5 signals. The spleen-invigorating method (Juyuan Jian) has an advantage in regulating epithelial-mesenchymal transition (EMT), angiogenesis, and glycolysis and shows higher communication intensity in the IL-6 and LIFR pathways.
2.Role and mechanism of T helper 17 cells/regulatory T cells immune balance regulated by the TGF-β1/Smad signaling pathway mediated in nonalcoholic steatohepatitis
Qian WANG ; Kaiyang LI ; Mei YANG ; Hang ZHANG ; Shengjin ZHU ; Qi ZHAO ; Jing HUANG
Journal of Clinical Hepatology 2025;41(5):942-947
Nonalcoholic steatohepatitis (NASH) is a chronic metabolic disease characterized by hepatocyte fatty degeneration and ballooning degeneration, and it plays an important role in the progression of hepatic steatosis. Recent studies have shown that immune homeostasis imbalance between T helper 17 (Th17) and regulatory T (Treg) cells are closely associated with the pathological process of NASH. Transforming growth factor-β1 (TGF-β1) is a key cytokine for regulating the differentiation and proliferation of Th17/Treg cells, and TGF-β1 binds to its receptor and activates the Smad signaling pathway, thereby regulating the immune balance of Th17/Treg cells and the expression of inflammatory factors and participating in the repair of liver inflammation. This article systematically reviews the molecular mechanism of the TGF-β1/Smad signaling pathway in affecting NASH by regulating the immune balance of Th17/Treg cells, in order to provide a theoretical basis for the research on the pathogenesis of NASH and related treatment strategies.
3.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
4.The role of selenoproteins in adipose tissue and obesity.
Yun-Fei ZHAO ; Yu-Hang SUN ; Tai-Hua JIN ; Yue LIU ; Yang-Di CHEN ; Wan XU ; Qian GAO
Acta Physiologica Sinica 2025;77(5):939-955
Selenoproteins, as the active form of selenium, play an important role in various physiological and pathological processes, such as anti-oxidation, anti-tumor, immune response, metabolic regulation, reproduction and aging. Although the expression level of selenoproteins in adipose tissue is significantly influenced by dietary selenium intake, it is closely related to the homeostasis of adipose tissue. In this review, we summarized the role of selenoproteins in the physiological function of adipose tissue and the pathogenesis of obesity in recent years, in order to provide a rationale for developing potential therapeutic agents for the treatment of obesity and related metabolic diseases.
Selenoproteins/metabolism*
;
Adipose Tissue/physiology*
;
Obesity/metabolism*
;
Humans
;
Animals
;
Selenium
5.Meta-analysis of Kirschner's needle and elastic intramedullary nail fixation for the treatment of proximal humeral fractures in children.
Tao SHI ; Zi-Hang XU ; Xin ZHANG ; Yu-Wang QIAN ; Lei ZHU ; Lai-Fa KONG
China Journal of Orthopaedics and Traumatology 2025;38(6):633-640
OBJECTIVE:
To systematically evaluated clinical efficacy of Kirschner's needle and elastic intramedullary nail fixation in treating proximal humeral fractures in children by Meta-analysis.
METHODS:
Literature on the treatment of proximal humeral fractures in children with Kirschler needles and elastic intramedullary nails published on Wanfang, VIP, CNKI and China biology medicine (CBM), PubMed, Embase, and Web of Science databases were searched from the establishment of databases to October, 2023. Literature extraction, management and data entry were performed by Endnote X9 and Excel 2019, and Meta-analysis was conducted by RevMan 5.3 software. The operation time, hospital stay, fracture healing time, shoulder joint extension range of motion, disabilities of arm, shoulder and hand(DASH) questionnaire score, Neer score or Constant-Murley score and complications were compared between two groups.
RESULTS:
A total of 7 literatures were included, 1 was prospective study, 6 were retrospective cohort study. There were 521 children, 264 children in Kirschner wire group and 257 children in elastic intramedullary nail fixation group. The results of Meta analysis showed operation time[WMD=-12.61, 95%CI(-24.89, -0.33), P=0.04], fracture healing time[WMD=-0.26, 95%CI(-0.49, -0.02), P=0.03], total complication rate [OR=6.83, 95%CI(3.33, 14.01), P<0.001], nail tract infection rate[OR=6.77, 95%CI(1.72, 26.69), P=0.006] and displacement fracture rate[OR=3.57, 95%CI(1.35, 9.44), P=0.01] between two groups had statistically differences(P>0.05), while there were no statistically significant difference in comparison of hospital stay, shoulder joint extension range of motion, DASH, Neer score, Constant-Murley score, and incidence of skin irritation between two groups (P>0.05).
CONCLUSION
Kirschner's needle internal fixation has a short operation time and simple operation, but it has a higher incidence of complications compared with elastic nail internal fixation technique. In terms of efficacy and safety, elastic intramedullary nail fixation is one of the options for the treatment of proximal humeral fractures in children.
Humans
;
Fracture Fixation, Intramedullary/instrumentation*
;
Child
;
Shoulder Fractures/physiopathology*
;
Bone Nails
;
Bone Wires
;
Male
;
Needles
;
Female
6.Bacteroi des fragilis-derived succinic acid promotes the degradation of uric acid by inhibiting hepatic AMPD2: Insight into how plant-based berberine ameliorates hyperuricemia.
Libin PAN ; Ru FENG ; Jiachun HU ; Hang YU ; Qian TONG ; Xinyu YANG ; Jianye SONG ; Hui XU ; Mengliang YE ; Zhengwei ZHANG ; Jie FU ; Haojian ZHANG ; Jinyue LU ; Zhao ZHAI ; Jingyue WANG ; Yi ZHAO ; Hengtong ZUO ; Xiang HUI ; Jiandong JIANG ; Yan WANG
Acta Pharmaceutica Sinica B 2025;15(10):5244-5260
In recent decades, the prevalence of hyperuricemia and gout has increased dramatically due to lifestyle changes. The drugs currently recommended for hyperuricemia are associated with adverse reactions that limit their clinical use. In this study, we report that berberine (BBR) is an effective drug candidate for the treatment of hyperuricemia, with its mechanism potentially involving the modulation of gut microbiota and its metabolite, succinic acid. BBR has demonstrated good therapeutic effects in both acute and chronic animal models of hyperuricemia. In a clinical trial, oral administration of BBR for 6 months reduced blood uric acid levels in 22 participants by modulating the gut microbiota, which led to an increase in the abundance of Bacteroides and a decrease in Clostridium sensu stricto_1. Furthermore, Bacteroides fragilis was transplanted into ICR mice, and the results showed that Bacteroides fragilis exerted a therapeutic effect on uric acid similar to that of BBR. Notably, succinic acid, a metabolite of Bacteroides, significantly reduced uric acid levels. Subsequent cell and animal experiments revealed that the intestinal metabolite, succinic acid, regulated the upstream uric acid synthesis pathway in the liver by inhibiting adenosine monophosphate deaminase 2 (AMPD2), an enzyme responsible for converting adenosine monophosphate (AMP) to inosine monophosphate (IMP). This inhibition resulted in a decrease in IMP levels and an increase in phosphate levels. The reduction in IMP led to a decreased downstream production of hypoxanthine, xanthine, and uric acid. BBR also demonstrated excellent renoprotective effects, improving nephropathy associated with hyperuricemia. In summary, BBR has the potential to be an effective treatment for hyperuricemia through the gut-liver axis.
7.Pharmacokinetics of Total Alkaloids of Corydalis saxicola in Depression Model Rats
Huaxi HANG ; Meishuang YU ; Yu YE ; Qian HUANG ; Yiran WANG ; Xuewen SHAO ; Peiyao CHEN ; Yang CAO ; Guoliang DAI ; Wenzheng JU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):175-183
ObjectiveTo investigate the effect of total alkaloids of Corydalis saxicola on a rat model of lipopolysaccharide(LPS)-induced depression, as well as the pharmacokinetic characteristics of 8 of its major components. MethodTwenty-four male SD rats were randomly divided into normal group, model group, fluoxetine group(10 mg·kg-1) and total alkaloids of C. saxicola group(210 mg·kg-1), with 6 rats in each group. In addition to the normal group, the rats were injected intraperitoneally with LPS to establish the inflammation model of depression, and the drug administration was started 1 week after modeling, and the administration groups were gavaged according to the corresponding dose, and the normal and model groups were intragastric administration with equal volume of distilled water, and the administration was performed along with the modeling. After two weeks of continuous administration, the effect of total alkaloids of C. saxicola on the behavior of depressed rats were tested by sucrose preference, forced swimming and open field experiments, the levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β and IL-6 in serum of rats were determined by enzyme-linked immunosorbent assay(ELISA), the histopathological changes of rat hippocampus were observed by hematoxylin-eosin(HE) staining. After the last administration, blood was collected from orbit according to the set time, and ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS) was established to simultaneously detect the concentrations of dehydrocavidine, tetrahydropalmatine, coptisine, palmatine, jatrorrhizine, berberine, berberrubine and epiberberine in plasma, and drug-time curves were drawn. The pharmacokinetic parameters were analyzed by DAS 2.0 software. ResultCompared with the normal group, the model group exhibited a decrease in sucrose preference rate, total distance traveled in the open field, as well as an increase in swimming immobility time and serum inflammatory factor expression(P<0.01). In contrast, compared with the model group, rats in each administration group showed an increase in sucrose preference rate and total distance traveled in the open field, a decrease in swimming immobility time, and a reduction in serum inflammatory factor expression(P<0.05, P<0.01). Additionally, HE staining results revealed that neurons in the hippocampus of rats from the model group were characterized by loss, disorganization and residual vacuoles, whereas those from the total alkaloids of C.saxicola group displayed an increase in number with orderly arrangement and clear cytoplasm. Pharmacokinetic results showed that the time to peak(tmax) and half-life(t1/2) of the 8 active ingredients were 0.19-2.06 h and 3.71-8.70 h after continuous administration of total alkaloids of C. saxicola. Among them, the area under the curve(AUC0-∞) of tetrahydropalmatine was the highest and the t1/2 was the shortest, and the AUC0-∞ of coptisine, palmatine, jatrorrhizine, berberine, berberrubine and epiberberine were low. The curves of dehydrocavidine, coptisine, palmatine, berberine and epiberberine showed obvious double peak phenomenon. ConclusionTotal alkaloids of C. saxicola can improve the depression-like behavior of rats, inhibit the expression of inflammatory factors in serum, improve the pathological injury of hippocampus, and has the antidepressant effect. Meanwhile, the effective site is absorbed quickly and eliminated slowly in the depressed model rats, and the efficacy is maintained for a long time.
8.Current status and prevention strategies for respiratory virus infections after lung transplantation
Min XIONG ; Xiaoshan LI ; Ting QIAN ; Lin MAN ; Hang YANG ; Jingyu CHEN ; Bo WU
Organ Transplantation 2024;15(6):970-976
Lung transplantation is an effective means of treating various end-stage lung diseases.However,compared with other solid organ transplants,the survival rate after lung transplantation is relatively low.The main reason is the numerous complications after lung transplantation,among which infection is one of the most common complications.Respiratory viral infections are an important type of infection after lung transplantation,which severely affect the survival time and quality of life of lung transplant recipients.Early identification,early prevention,and active diagnosis and treatment are of great significance in reducing the incidence and fatality of respiratory viral infections after lung transplantation.This article reviews the epidemiology,risk factors,prevention and treatment principles,and specific prevention and treatment progress of common viruses in respiratory viral infections after lung transplantation at home and abroad,in order to provide a reference for the prevention and treatment of respiratory viral infections after lung transplantation in clinical practice.
9.Clinical significance of PP1A and GSDME mediated pyroptosis in colorectal cancer
Hang SI ; Nana WANG ; Wenli CHANG ; Susu LIU ; Wenya SHI ; Qian ZHANG
Chinese Journal of Clinical and Experimental Pathology 2024;40(6):580-586,591
Purpose To detect the expression of PP1A and GSDME and the abundance of CD8+T lymphocytes in colorectal cancer,and to explore the correlation and clinical significance of PP1A and GSDME mediated pyroptosis.Methods GEPIA da-tabase was applied to analyze the mRNA expression of PP1A and GSDME in colorectal cancer and normal tissues.Western blot assay was used to detect the expression of PP1A in colorectal cancer and the corresponding normal mucosa.Immunohisto-chemistry was applied to detect the expression of PP1A and GS-DME and CD8+T lymphocytes abundance in 107 colorectal car-cinomas and normal mucosa adjacent to the carcinomas.Spearman rank correlation was used to analyze the correlation between PP1A,GSDME and CD8+T cells abundance.Results The GEPIA database search showed that mRNA expression of PP1A and GSDME in colorectal cancer differed compared to normal tissues(P<0.05).Western blot analysis showed that the relative expression of PP1A in colorectal cancer tissue was significantly higher than that in para-cancerous tissues(0.937 vs 0.643,P<0.001).Immunohistochemical results showed that the expression of PP1A in colorectal cancer tissues was signifi-cantly higher than that in normal mucosa(P<0.05).The ex-pression of GSDME in cancer tissue was closely correlated with patients'age,clinical stage and mismatch repair proteins(P<0.05),and the distribution of CD8+T cells in the cancer infil-tration front was significantly higher than that in the normal mu-cosa,and the distribution of CD8+T cells in the cancer was cor-related with pT stage,clinical stage and lymph node metastasis.Spearman correlation analysis showed that PP1A was negatively correlated with GSDME expression(r=-0.196,P<0.05).The overall survival PP1A-positive colorectal cancer patients was worse than that of PP1A-negative patients(P<0.05),and the prognosis of patients was correlated with the degree of differentia-tion,lymph node metastasis,pT stage and clinical stage.Posi-tive expression of PP1A,degree of differentiation,clinical stage,pT stage and lymph node metastasis are independent risk factors affecting the prognosis of colorectal cancer patients.Conclusion PP1A is highly expressed in colorectal cancer and negatively correlated with GSDME-mediated cell pyroptosis,and the differ-ential expression of both is closely related to the progression and prognosis of colorectal cancer,which can be used as a potential indicator for judgment of the prognosis of colorectal cancer pa-tients.The differential distribution of CD8+T cells may be asso-ciated with GSDME-mediated cell pyroptosis and tumor develop-ment.
10.Construction of glucosamine/DNA composite nanomaterials and its effect on function of Raw264.7 cells
Yuhang XU ; Yue CHEN ; Qing XIANG ; Shuoxin ZHANG ; Daohui GONG ; Di WU ; Guansong WANG ; Hang QIAN
Journal of Army Medical University 2024;46(13):1494-1501
Objective To construct a new type of glucosamine/DNA composite nanostructure(NTGlcN)assembled without magnesium,verify whether or not glucosamine can mediate the assembly of DNA nanotubes(NT)and assess its effect on the function of Raw264.7 cells.Methods Utilizing the gradient annealing method with 3 DNA single strands Y1,Y2,and Y3,glucosamine(GlcN)was employed to mediate the assembly of DNA NT,resulting in the formation of glucosamine/DNA composite nanostructures.Atomic force microscopy(AFM)was used to observe the surface structure of the nanomaterial and dynamic light scattering(DLS)was used to measure its size.RAW264.7 cells were used in cell experiments.The cytotoxicity of GlcN and NTGlcN was assessed using CCK-8 assay.Flow cytometry and laser confocal microscopy were employed to investigate the cellular uptake efficiency of the nanostructures.The effects of NTGlcN and NTMg(Mg2+-assembled of DNA NT)on the expression levels of inflammatory cytokines(IL-1β,IL-6)in macrophages induced by lipopolysaccharides(LPS)were evaluated using RT-qPCR.Results GlcN successfully mediated the synthesis of NTGlcN,which exhibited good stability.AFM characterization results revealed that NTGlcN formed tubular particles that were uniformly distributed on the surface of mica.DLS measurements indicated that the diameter of NTGlcN was approximately 15.26±3.86 nm.Cell experiments demonstrated that,compared to NTMg,macrophages exhibited a higher cellular uptake efficiency for NTGlcN,with a higher cell survival rate following treatment with NTGlcN(P<0.05).After NTGlcN treatment,the expression of inflammatory cytokines in LPS-induced macrophages was reduced(P<0.05).Conclusion The glucosamine/DNA composite nanostructures have been successfully developed,possessing excellent stability,biocompatibility and cell uptake efficiency.NTGlcN is capable of reducing the cytotoxicity of GlcN and can suppress cellular inflammatory responses by decreasing the expression of inflammatory cytokines in RAW264.7 cells.

Result Analysis
Print
Save
E-mail