1.Multidisciplinary team working for diagnosis and treatment of fetal intestinal volvulus: report of two cases
Hongmei CUI ; Lyv LING ; Tiangang LI ; Zhicheng YUE ; Jingyun SHI ; Qi GU ; Hanbo TANG
Chinese Journal of Perinatal Medicine 2021;24(9):689-692
We report the diagnosis and treatment of two cases of fetal intestinal volvulus. Case 1 presented to Gansu Provincial Maternity and Child-care Hospital due to reduced fetal movements at 33 +4 weeks of gestation. Case 2 was referred to our hospital from a local hospital because of fetal bowel dilatation by ultrasound at 32 +5 weeks. Both cases were found to have fetal bowel dilatation with typical "whirlpool" or "coffee bean" signs on ultrasound after admission. After multidisciplinary consultation and discussion, an emergency cesarean section was performed, during which the two neonates underwent surgical operation and resection of necrotic bowel loops after confirming the diagnosis of volvulus and intestinal necrosis. Case 2 suffered from pulmonary artery thrombosis after the bowel surgery, and underwent pulmonary artery incision and embolectomy within 24 hours. Both newborns recovered well after the operation, whose growth parameters and nervous system development was normal for follow-up.
2.Fluorescence and MR dual-mode imaging for displaying drainage pathways of interstitial fluid and substance clearance pattern in rat brain
Tianzi GAO ; Lan YUAN ; Yang WANG ; Hanbo TAN ; Ziyi WEI ; Jiayu WANG ; Yajuan GAO ; Dongyang LIU ; Cheng CUI ; Jianfei SUN ; Zhaoheng XIE ; Hongbin HAN
Chinese Journal of Medical Imaging Technology 2024;40(5):705-711
Objective To observe the drainage pathways of interstitial fluid(ISF)and substance clearance pattern in rat brain with fluorescence tracing imaging and treacer-based MRI.Methods Thirty-three male SD rats were randomly divided into fluorescence tracing group(F group,n=18)and treacer-based MRI group(MRI group,n=15),then further divided into thalamic,hippocampal and caudate nucleus subgroups,respectively.Evans blue was injected to rats in F group,and cardiac perfusion was performed after injection,then brain tissue was harvested,and frozen sections were made to observe the drainage pathways of IFS in different subgroups.MRI was performed on rats in MRI group before and after injection of gadolinium-diethylenetriamine pentaacetic acid(Gd-DTPA)to observe signal intensity in ROI of brain regions in different subgroups,the signal unit ratio was calculated,and the changing trend was explored.Results ISF in thalamus,hippocampus and caudate nucleus had different dominant drainage pathways,and the time of tracer reached to adjacent brain regions and whole brain in F group were different.In MRI group,within 4 h after injection of Gd-DTPA,there were differences in direction and clearance rate among tracer in thalamus,hippocampus and caudate nucleus,mainly manifesting as the tracer in thalamus and hippocampus drained to the ipsilateral cortex and lateral ventricle,while the tracer in the caudate nucleus diffused to the cortex and midbrain,and there were differences of the peak time of tracer signal among adjacent drainage brain regions.Conclusion Fluorescence and MR dual-mode imaging showed that there were differences in the dominant drainage pathways of IFS and clearance rates of small molecule substances among hypothalamus,hippocampus and caudate nucleus of rats.
3.Identifications and characteristics of organic ultraviolet filters in indoor air
Hong LU ; Ze WANG ; Hanbo CUI ; Yihui JIN ; Fan YANG ; Lili FENG ; Xiaofang HU ; Zheming SHEN ; Tao YUAN
Journal of Environmental and Occupational Medicine 2021;38(12):1345-1349
Background Organic ultraviolet (UV) filters are widely used in personal care products. So far, relevant studies on organic UV filters in indoor dust have been reported. Objective This study aims to establish a thermal desorption combined with gas chromatography-mass spectrometry (TD-GCMS) method to identify organic UV filters in indoor air collected from different indoor environments, so as to reveal the pollution levels and characteristics of organic UV filters in indoor environment. Methods Based on the standard indoor air sampling protocol, a total of 60 samples were collected from eight different kinds of indoor environments (male and female dormitory rooms, offices, labs, barber shops, printing shops, hotels, and private cars) on and nearby Minhang Campus of Shanghai Jiao Tong University from August to November, 2020. The concentrations of six common organic UV filters, including homosalate (HMS), 2-ethylhexyl salicylate (EHS), 3-(4-methylbenzylidene)-camphor (4-MBC), isoamyl 4-methoxycinnamate (IMC), octocrylene (OC), and octyl 4-methoxycinnamate (EHMC), in the air of different indoor environments were detected by TD-GCMS. Furthermore, the correlations of individual organic UV filters in different indoor environments were analysed. Results Under optimized detection conditions, the correlation coefficients of the quantitative standard curves of selected six organic UV filters were all at or above 0.997. The relative standard deviations of 1 mg·L−3 samples ranged from 1.74% to 7.11%, and the recoveries ranged from 67.17% to 106.5%. The relative standard deviations of 10 mg·L−3 samples ranged from 3.59% to 8.76%, and the recoveries ranged from 78.80% to 126.60%. The detection rates of the other five organic UV filters except IMC were all at or more than 92% in eight different kinds of indoor air. The median concentration of total organic UV filters was 75.17 ng·m−3, and EHS presented the highest median concentration of 28.55 ng·m−3. Regarding different indoor environments, the highest concentration of total organic UV filters was found in the female dormitory samples, 154.98 ng·m−3. The respective pair-analysis among HMS, EHMC, OC, and EHS of all indoor air samples reached a significant level of correlation (r=0.40-0.61, P<0.01). Conclusion The TD-GCMS method is satisfactory for the determination of organic UV filters in indoor air. EHS, EHMC, HMS, OC, and 4-MBC are identified in selected eight indoor environments, and they may have similar sources of pollution.