1.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
2.Era of Digital Healthcare: Emergence of the Smart Patient
Dooyoung HUHH ; Kwangsoo SHIN ; Miyeong KIM ; Jisan LEE ; Hana KIM ; Jinho CHOI ; Suyeon BAN
Healthcare Informatics Research 2025;31(1):107-110
3.Association between Bioelectrical Impedance Parameters, Magnetic Resonance Imaging Muscle Parameters, and Fatty Liver Severity in Children and Adolescents
Kyungchul SONG ; Eun Gyung SEOL ; Eunju LEE ; Hye Sun LEE ; Hana LEE ; Hyun Wook CHAE ; Hyun Joo SHIN
Gut and Liver 2025;19(1):108-115
Background/Aims:
To evaluate the associations between pediatric fatty liver severity, bioelectrical impedance analysis (BIA), and magnetic resonance imaging parameters, including total psoas muscle surface area (tPMSA) and paraspinal muscle fat (PMF).
Methods:
Children and adolescents who underwent BIA and liver magnetic resonance imaging between September 2022 and November 2023 were included. Linear regression analyses identified predictors of liver proton density fat fraction (PDFF) including BIA parameters, tPMSA, and PMF. Ordinal logistic regression analysis identified the association between these parameters and fatty liver grades. Pearson’s correlation coefficients were used to evaluate the relationships between tPMSA and muscle-related BIA parameters, and between PMF and fat-related BIA parameters.
Results:
Overall, 74 participants aged 8 to 16 years were included in the study. In the linear regression analyses, the percentage of body fat was positively associated with PDFF in all participants, whereas muscle-related BIA parameters were negatively associated with PDFF in participants with obesity. PMF and the PMF index were positively associated with PDFF in normalweight and overweight participants. In the ordinal logistic regression, percentage of body fat was positively associated with fatty liver grade in normal-weight and overweight participants and those with obesity, whereas muscle-related BIA parameters were negatively associated with fatty liver grade in participants with obesity. The PMF index was positively associated with fatty liver grade in normal/overweight participants. In the Pearson correlation analysis, muscle-related BIA parameters were correlated with tPMSA, and the fat-related BIA parameters were correlated with PMF.
Conclusions
BIA parameters and PMF are potential screening tools for assessing fatty liver in children.
4.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
5.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
6.Association between Bioelectrical Impedance Parameters, Magnetic Resonance Imaging Muscle Parameters, and Fatty Liver Severity in Children and Adolescents
Kyungchul SONG ; Eun Gyung SEOL ; Eunju LEE ; Hye Sun LEE ; Hana LEE ; Hyun Wook CHAE ; Hyun Joo SHIN
Gut and Liver 2025;19(1):108-115
Background/Aims:
To evaluate the associations between pediatric fatty liver severity, bioelectrical impedance analysis (BIA), and magnetic resonance imaging parameters, including total psoas muscle surface area (tPMSA) and paraspinal muscle fat (PMF).
Methods:
Children and adolescents who underwent BIA and liver magnetic resonance imaging between September 2022 and November 2023 were included. Linear regression analyses identified predictors of liver proton density fat fraction (PDFF) including BIA parameters, tPMSA, and PMF. Ordinal logistic regression analysis identified the association between these parameters and fatty liver grades. Pearson’s correlation coefficients were used to evaluate the relationships between tPMSA and muscle-related BIA parameters, and between PMF and fat-related BIA parameters.
Results:
Overall, 74 participants aged 8 to 16 years were included in the study. In the linear regression analyses, the percentage of body fat was positively associated with PDFF in all participants, whereas muscle-related BIA parameters were negatively associated with PDFF in participants with obesity. PMF and the PMF index were positively associated with PDFF in normalweight and overweight participants. In the ordinal logistic regression, percentage of body fat was positively associated with fatty liver grade in normal-weight and overweight participants and those with obesity, whereas muscle-related BIA parameters were negatively associated with fatty liver grade in participants with obesity. The PMF index was positively associated with fatty liver grade in normal/overweight participants. In the Pearson correlation analysis, muscle-related BIA parameters were correlated with tPMSA, and the fat-related BIA parameters were correlated with PMF.
Conclusions
BIA parameters and PMF are potential screening tools for assessing fatty liver in children.
7.Association between Bioelectrical Impedance Parameters, Magnetic Resonance Imaging Muscle Parameters, and Fatty Liver Severity in Children and Adolescents
Kyungchul SONG ; Eun Gyung SEOL ; Eunju LEE ; Hye Sun LEE ; Hana LEE ; Hyun Wook CHAE ; Hyun Joo SHIN
Gut and Liver 2025;19(1):108-115
Background/Aims:
To evaluate the associations between pediatric fatty liver severity, bioelectrical impedance analysis (BIA), and magnetic resonance imaging parameters, including total psoas muscle surface area (tPMSA) and paraspinal muscle fat (PMF).
Methods:
Children and adolescents who underwent BIA and liver magnetic resonance imaging between September 2022 and November 2023 were included. Linear regression analyses identified predictors of liver proton density fat fraction (PDFF) including BIA parameters, tPMSA, and PMF. Ordinal logistic regression analysis identified the association between these parameters and fatty liver grades. Pearson’s correlation coefficients were used to evaluate the relationships between tPMSA and muscle-related BIA parameters, and between PMF and fat-related BIA parameters.
Results:
Overall, 74 participants aged 8 to 16 years were included in the study. In the linear regression analyses, the percentage of body fat was positively associated with PDFF in all participants, whereas muscle-related BIA parameters were negatively associated with PDFF in participants with obesity. PMF and the PMF index were positively associated with PDFF in normalweight and overweight participants. In the ordinal logistic regression, percentage of body fat was positively associated with fatty liver grade in normal-weight and overweight participants and those with obesity, whereas muscle-related BIA parameters were negatively associated with fatty liver grade in participants with obesity. The PMF index was positively associated with fatty liver grade in normal/overweight participants. In the Pearson correlation analysis, muscle-related BIA parameters were correlated with tPMSA, and the fat-related BIA parameters were correlated with PMF.
Conclusions
BIA parameters and PMF are potential screening tools for assessing fatty liver in children.
8.Era of Digital Healthcare: Emergence of the Smart Patient
Dooyoung HUHH ; Kwangsoo SHIN ; Miyeong KIM ; Jisan LEE ; Hana KIM ; Jinho CHOI ; Suyeon BAN
Healthcare Informatics Research 2025;31(1):107-110
9.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
10.Association between Bioelectrical Impedance Parameters, Magnetic Resonance Imaging Muscle Parameters, and Fatty Liver Severity in Children and Adolescents
Kyungchul SONG ; Eun Gyung SEOL ; Eunju LEE ; Hye Sun LEE ; Hana LEE ; Hyun Wook CHAE ; Hyun Joo SHIN
Gut and Liver 2025;19(1):108-115
Background/Aims:
To evaluate the associations between pediatric fatty liver severity, bioelectrical impedance analysis (BIA), and magnetic resonance imaging parameters, including total psoas muscle surface area (tPMSA) and paraspinal muscle fat (PMF).
Methods:
Children and adolescents who underwent BIA and liver magnetic resonance imaging between September 2022 and November 2023 were included. Linear regression analyses identified predictors of liver proton density fat fraction (PDFF) including BIA parameters, tPMSA, and PMF. Ordinal logistic regression analysis identified the association between these parameters and fatty liver grades. Pearson’s correlation coefficients were used to evaluate the relationships between tPMSA and muscle-related BIA parameters, and between PMF and fat-related BIA parameters.
Results:
Overall, 74 participants aged 8 to 16 years were included in the study. In the linear regression analyses, the percentage of body fat was positively associated with PDFF in all participants, whereas muscle-related BIA parameters were negatively associated with PDFF in participants with obesity. PMF and the PMF index were positively associated with PDFF in normalweight and overweight participants. In the ordinal logistic regression, percentage of body fat was positively associated with fatty liver grade in normal-weight and overweight participants and those with obesity, whereas muscle-related BIA parameters were negatively associated with fatty liver grade in participants with obesity. The PMF index was positively associated with fatty liver grade in normal/overweight participants. In the Pearson correlation analysis, muscle-related BIA parameters were correlated with tPMSA, and the fat-related BIA parameters were correlated with PMF.
Conclusions
BIA parameters and PMF are potential screening tools for assessing fatty liver in children.

Result Analysis
Print
Save
E-mail