1.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
2.Advanced technique of biportal endoscopic transforaminal lumbar interbody fusion for revision surgery: a technical note
Young-Il KO ; Jin Young LEE ; Hun-Chul KIM ; Hyeon Guk CHO ; Jeong Woo PARK ; Sang-Ho HAN
Asian Spine Journal 2025;19(2):267-274
The application area of biportal endoscopic spine surgery (BESS) is gradually expanding. Compared with conventional fusion surgery, transforaminal interbody fusion (TLIF) using BESS (BESS-TLIF) has the advantages of less bleeding, minimal postoperative pain, and faster recovery. This technical note highlights its application in managing complex conditions such as scar tissue adhesion, altered anatomy, and implant removal, common in reoperations. The method focuses on precise dissection, endoscopic visualization, and careful tissue handling to ensure effective decompression and stabilization. Three representative cases, including reoperations for recurrent disc herniation, adjacent segment disease (ASD) following prior fusion, and ASD with nonunion of the prior fusion site requiring fusion extension, were described. All three cases exhibited clinical improvement following surgery. BESS is an effective and safe method for spinal revision surgery not only in simple decompression surgery but also in cases that required fusion surgery. As BESS is advancing, its role in complex spinal surgeries is expected to expand, potentially setting new standards in minimally invasive spine surgery.
3.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
4.Advanced technique of biportal endoscopic transforaminal lumbar interbody fusion for revision surgery: a technical note
Young-Il KO ; Jin Young LEE ; Hun-Chul KIM ; Hyeon Guk CHO ; Jeong Woo PARK ; Sang-Ho HAN
Asian Spine Journal 2025;19(2):267-274
The application area of biportal endoscopic spine surgery (BESS) is gradually expanding. Compared with conventional fusion surgery, transforaminal interbody fusion (TLIF) using BESS (BESS-TLIF) has the advantages of less bleeding, minimal postoperative pain, and faster recovery. This technical note highlights its application in managing complex conditions such as scar tissue adhesion, altered anatomy, and implant removal, common in reoperations. The method focuses on precise dissection, endoscopic visualization, and careful tissue handling to ensure effective decompression and stabilization. Three representative cases, including reoperations for recurrent disc herniation, adjacent segment disease (ASD) following prior fusion, and ASD with nonunion of the prior fusion site requiring fusion extension, were described. All three cases exhibited clinical improvement following surgery. BESS is an effective and safe method for spinal revision surgery not only in simple decompression surgery but also in cases that required fusion surgery. As BESS is advancing, its role in complex spinal surgeries is expected to expand, potentially setting new standards in minimally invasive spine surgery.
5.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
6.Advanced technique of biportal endoscopic transforaminal lumbar interbody fusion for revision surgery: a technical note
Young-Il KO ; Jin Young LEE ; Hun-Chul KIM ; Hyeon Guk CHO ; Jeong Woo PARK ; Sang-Ho HAN
Asian Spine Journal 2025;19(2):267-274
The application area of biportal endoscopic spine surgery (BESS) is gradually expanding. Compared with conventional fusion surgery, transforaminal interbody fusion (TLIF) using BESS (BESS-TLIF) has the advantages of less bleeding, minimal postoperative pain, and faster recovery. This technical note highlights its application in managing complex conditions such as scar tissue adhesion, altered anatomy, and implant removal, common in reoperations. The method focuses on precise dissection, endoscopic visualization, and careful tissue handling to ensure effective decompression and stabilization. Three representative cases, including reoperations for recurrent disc herniation, adjacent segment disease (ASD) following prior fusion, and ASD with nonunion of the prior fusion site requiring fusion extension, were described. All three cases exhibited clinical improvement following surgery. BESS is an effective and safe method for spinal revision surgery not only in simple decompression surgery but also in cases that required fusion surgery. As BESS is advancing, its role in complex spinal surgeries is expected to expand, potentially setting new standards in minimally invasive spine surgery.
7.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
8.Machine Learning Models for the Noninvasive Diagnosis of Bladder Outlet Obstruction and Detrusor Underactivity in Men With Lower Urinary Tract Symptoms
Hyungkyung SHIN ; Kwang Jin KO ; Wei-Jin PARK ; Deok Hyun HAN ; Ikjun YEOM ; Kyu-Sung LEE
International Neurourology Journal 2024;28(Suppl 2):S74-81
Purpose:
This study aimed to develop and evaluate machine learning models, specifically CatBoost and extreme gradient boosting (XGBoost), for diagnosing lower urinary tract symptoms (LUTS) in male patients. The objective is to differentiate between bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using a comprehensive dataset that includes patient-reported outcomes, uroflowmetry measurements, and ultrasound-derived features.
Methods:
The dataset used in this study was collected from male patients aged 40 and older who presented with LUTS and sought treatment at the urology department of Samsung Medical Center. We developed and trained CatBoost and XGBoost models using this dataset. These models incorporated features like prostate size, voiding parameters, and responses from questionnaires. Their performance was assessed using standard metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUROC).
Results:
The results indicated that the CatBoost models displayed greater sensitivity, rendering them effective for initial screenings by accurately identifying true positive cases. Conversely, the XGBoost models showed higher specificity and precision, making them more suitable for confirming diagnoses and reducing false positives. In terms of overall performance for both BOO and DUA, XGBoost surpassed CatBoost, achieving an AUROC of 0.826 and 0.819, respectively.
Conclusions
Integrating these machine learning models into the diagnostic workflow for LUTS can significantly enhance clinical decision-making by offering noninvasive, cost-effective, and patient-friendly diagnostic alternatives. The combined application of CatBoost and XGBoost models has the potential to improve diagnostic accuracy and provide customized treatment plans for patients, ultimately leading to better clinical outcomes.
9.Machine Learning Models for the Noninvasive Diagnosis of Bladder Outlet Obstruction and Detrusor Underactivity in Men With Lower Urinary Tract Symptoms
Hyungkyung SHIN ; Kwang Jin KO ; Wei-Jin PARK ; Deok Hyun HAN ; Ikjun YEOM ; Kyu-Sung LEE
International Neurourology Journal 2024;28(Suppl 2):S74-81
Purpose:
This study aimed to develop and evaluate machine learning models, specifically CatBoost and extreme gradient boosting (XGBoost), for diagnosing lower urinary tract symptoms (LUTS) in male patients. The objective is to differentiate between bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using a comprehensive dataset that includes patient-reported outcomes, uroflowmetry measurements, and ultrasound-derived features.
Methods:
The dataset used in this study was collected from male patients aged 40 and older who presented with LUTS and sought treatment at the urology department of Samsung Medical Center. We developed and trained CatBoost and XGBoost models using this dataset. These models incorporated features like prostate size, voiding parameters, and responses from questionnaires. Their performance was assessed using standard metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUROC).
Results:
The results indicated that the CatBoost models displayed greater sensitivity, rendering them effective for initial screenings by accurately identifying true positive cases. Conversely, the XGBoost models showed higher specificity and precision, making them more suitable for confirming diagnoses and reducing false positives. In terms of overall performance for both BOO and DUA, XGBoost surpassed CatBoost, achieving an AUROC of 0.826 and 0.819, respectively.
Conclusions
Integrating these machine learning models into the diagnostic workflow for LUTS can significantly enhance clinical decision-making by offering noninvasive, cost-effective, and patient-friendly diagnostic alternatives. The combined application of CatBoost and XGBoost models has the potential to improve diagnostic accuracy and provide customized treatment plans for patients, ultimately leading to better clinical outcomes.
10.Machine Learning Models for the Noninvasive Diagnosis of Bladder Outlet Obstruction and Detrusor Underactivity in Men With Lower Urinary Tract Symptoms
Hyungkyung SHIN ; Kwang Jin KO ; Wei-Jin PARK ; Deok Hyun HAN ; Ikjun YEOM ; Kyu-Sung LEE
International Neurourology Journal 2024;28(Suppl 2):S74-81
Purpose:
This study aimed to develop and evaluate machine learning models, specifically CatBoost and extreme gradient boosting (XGBoost), for diagnosing lower urinary tract symptoms (LUTS) in male patients. The objective is to differentiate between bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using a comprehensive dataset that includes patient-reported outcomes, uroflowmetry measurements, and ultrasound-derived features.
Methods:
The dataset used in this study was collected from male patients aged 40 and older who presented with LUTS and sought treatment at the urology department of Samsung Medical Center. We developed and trained CatBoost and XGBoost models using this dataset. These models incorporated features like prostate size, voiding parameters, and responses from questionnaires. Their performance was assessed using standard metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUROC).
Results:
The results indicated that the CatBoost models displayed greater sensitivity, rendering them effective for initial screenings by accurately identifying true positive cases. Conversely, the XGBoost models showed higher specificity and precision, making them more suitable for confirming diagnoses and reducing false positives. In terms of overall performance for both BOO and DUA, XGBoost surpassed CatBoost, achieving an AUROC of 0.826 and 0.819, respectively.
Conclusions
Integrating these machine learning models into the diagnostic workflow for LUTS can significantly enhance clinical decision-making by offering noninvasive, cost-effective, and patient-friendly diagnostic alternatives. The combined application of CatBoost and XGBoost models has the potential to improve diagnostic accuracy and provide customized treatment plans for patients, ultimately leading to better clinical outcomes.

Result Analysis
Print
Save
E-mail