1.Thirty years of metabolic engineering for biosynthesis of polyhydroxyalkanoates.
Xinyu CHEN ; Mengyi LI ; Guo-Qiang CHEN
Chinese Journal of Biotechnology 2021;37(5):1794-1811
Polyhydroxyalkanoate (PHA) is a family of biodegradable polyesters synthesized by microorganisms. It has various monomer structures and physical properties with broad application prospects. However, its large-scale production is still hindered by the high cost. In the past 30 years, metabolic engineering approach has been used to tune the metabolic flux, engineer and introduce pathways. The efficiency of PHA synthesis by microorganisms has been significantly improved, and the diversity of PHA monomer, structure and substrate have also been enriched. Meanwhile, by changing cell morphology and PHA particle size, more efficient downstream production process has achieved and PHA production costs have been reduced. In recent years, "Next generation industrial biotechnology" (NGIB) based on extremophiles, especially halophilic Halomonas spp., has been rapidly developed. NGIB has achieved the opening and continuous production of PHA, which simplifies the production process and saves energy and fresh water. Combined with metabolic engineering, Halomonas spp. can be transformed into low-cost production platform of numerous PHA. It is expected to improve the market competitiveness and promote the commercialization of PHA.
Biotechnology
;
Halomonas/genetics*
;
Metabolic Engineering
;
Polyesters
;
Polyhydroxyalkanoates
2.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
Alkalies
;
metabolism
;
Bacteria
;
drug effects
;
genetics
;
Halomonas
;
genetics
;
Plant Roots
;
microbiology
;
RNA, Ribosomal, 16S
;
genetics
;
Salt Tolerance
;
genetics
;
Seedlings
;
growth & development
;
microbiology
;
Soil
;
chemistry
;
Soil Microbiology
;
Triticum
;
microbiology