1.Chlorogenic acid ameliorates heart failure by attenuating cardiomyocyte ferroptosis
Kai Huang ; Fanghe Li ; Jiayang Tang ; Haiyin Pu ; Vasily Sukhotukov ; Alexander N Orekhov ; Shuzhen Guo
Journal of Traditional Chinese Medical Sciences 2024;11(2):191-198
Objective:
To elucidate the effects of chlorogenic acid (CGA), a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods, including Lonicera japonica Thunb. (Jin Yin Hua), Eucommia ulmoides Oliv. (Du Zhong Ye), tea, and coffee, on cardiomyocyte ferroptosis and heart failure.
Methods:
We assessed the effect of CGA on cardiac function using a mouse model of heart failure induced by transverse aortic constriction (TAC). These indicators included the left ventricular ejection fraction (LVEF), fractional shortening (LVFS), end-systolic volume (LVESV), end-diastolic volume (LVEDV), end-systolic diameter (LVESD), and end-diastolic diameter (LVEDD). An isoprenaline hydrochloride (ISO)-induced H9c2 cardiomyocyte cell model was also established, and the cells were treated with various concentrations of CGA. To assess the effect of CGA on ferroptosis in cardiomyocytes, we measured cell viability and evaluated the levels of intracellular reactive oxygen species (ROS), ferrous ions (Fe2+), and lipid peroxidation using fluorescent staining. To clarify the ferroptosis signaling pathway regulated by CGA, western blotting was used to examine the expression of ferroptosis biomarkers, specifically solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), in H9c2 cardiomyocytes and mouse myocardial tissues.
Results:
CGA significantly enhanced cardiac performance indices such as LVEF, LVFS, LVESV, LVEDV, LVESD, and LVEDD. H9c2 cardiomyocytes exposed to ISO showed decreased cell viability and increased ROS levels, Fe2+ content, and lipid peroxidation levels. However, CGA treatment significantly ameliorated these changes. Additionally, in both H9c2 cardiomyocytes and myocardial tissue obtained from mice with TAC, CGA increased the expression of ferroptosis-related proteins, including SLC7A11 and GPX4.
Conclusion
CGA has the potential to enhance cardiac function and diminish lipid peroxidation and ROS levels in cardiomyocytes via the SLC7A11/GPX4 signaling pathway. This process alleviates ferroptosis in cardiomyocytes. These results provide new insights into the clinical use of CGA and the management of heart failure.
2.Establishment and Evaluation of Heart Failure Model with Qi Deficiency Syndrome
Jiang YU ; Jiayang TANG ; Shuai LI ; Xiang LI ; Haiyin PU ; Yu PENG ; Fanghe LI ; Shuzhen GUO
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(15):60-67
ObjectiveTo establish and evaluate a mouse model of heart failure with Qi deficiency syndrome. MethodForty-four KM mice were randomly divided into sham operation group, model group, and modified Si Junzitang group (12.89 g·kg-1). The model group and the modified Si Junzitang group underwent thoracic aortic constriction (TAC), while the sham operation group only underwent suture without constriction. Echocardiography and pathological examination were used to assess the heart failure model and evaluate the pharmacological effects. Macroscopic characterization, microscopic biology, and formula identification were conducted to collect general signs, body weight, open-field behavior, grip strength, mitochondrial ultrastructure, and other macroscopic and microscopic characteristics of mice. Mitochondrial fission and fusion protein expression were measured to determine the syndrome type. ResultEight weeks after TAC, compared with the sham operation group, the model group showed a significant decrease in left ventricular ejection fraction (LVEF) (P<0.01), and modified Si Junzitang improved LVEF in mice (P<0.05). Hematoxylin-eosin (HE) staining of the heart showed inflammatory cell infiltration and thickening of blood vessel walls in the model group, which was significantly improved by modified Si Junzitang. After 6-8 weeks, compared with the sham operation group and the modified Si Junzitang group, the model group exhibited significant hair loss, hair yellowing, decreased activity, and depression. Moreover, compared with the sham operation group, the model group had a significantly lower increase in body weight (P<0.05), while the modified Si Junzitang group showed a significant increase in body weight (P<0.05) compared with the model group. After 6-8 weeks, compared with the sham operation group, the model group showed a significant decrease in open-field distance and speed (P<0.05), while the modified Si Junzitang group exhibited significantly improved open-field distance and speed in the 8th week (P<0.05). After 6-8 weeks, compared with the sham operation group, the model group exhibited a significant decrease in maximum grip strength (P<0.05), while the modified Si Junzitang group showed a significant increase in maximum grip strength 8 weeks after TAC (P<0.05). Transmission electron microscopy of the gastrocnemius muscle showed uneven muscle tissue matrix, mitochondrial swelling, increased volume, matrix dissolution, ridge loss, and vacuolization in the model group, while modified Si Junzitang improved mitochondrial swelling, ridge fracture, and matrix vacuolization. Western blot analysis showed that the expression of the kinetic associated protein 1 (DRP1) in the gastrocnemius muscle of the model group significantly increased (P<0.01), and the expression of mitochondrial fusion hormone 1 (MFN1) significantly decreased (P<0.05) as compared with those in the sham operation group. Furthermore, compared with the model group, the modified Si Junzitang group exhibited a significant decrease in the expression of DRP1 (P<0.05) and a significant increase in MFN1 expression (P<0.01). ConclusionMice exhibited significant manifestations of qi deficiency syndrome 6-8 weeks after TAC, accompanied by abnormal mitochondrial morphology and function in the gastrocnemius muscle, which were significantly improved by modified Si Junzitang.