1.Prediction Study on Suitable Growth Areas of Polygala tenuifolia in Shanxi Province Based on MaxEnt Model and ArcGIS
Xia JIANG ; Yuerong ZHANG ; Junxi ZHAO ; Panpan SHI ; Haixian ZHAN
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(7):1-7
Objective To predict the potential suitable distribution areas of Polygala tenuifolia in Shanxi Province;To provide basis for the excavation and utilization of existing resources and the selection of cultivation areas of Polygala tenuifolia.Methods The distribution information of 1 102 Polygona tenuifolia samples was collected(Among them,there were 1 060 samples of Polygala tenuifolia Willd.,42 samples of Polygala sibirica L.).Combined with the 55 ecological factor data,the MaxEnt model and ArcGIS were applied to analyze the main ecological factors affecting the distribution of Polygala tenuifolia.Results The dominant ecological factors for the suitability distribution of Polygala tenuifolia were vegetation type,precipitation,temperature,etc.The potential suitable distribution areas of Polygala tenuifolia in Shanxi Province were mainly concentrated in Linfen,Lvliang,Taiyuan,Changzhi,Jinzhong,southeastern of Yuncheng,northwestern of Xinzhou,southwestern of Shuozhou,etc.Conclusion The ecological suitability zoning map of Polygala tenuifolia Willd.and Polygala sibirica L.was obtained,which can provide reference for the reasonable selection of planting areas and standardized production of Polygala tenuifolia in Shanxi Province.
2.Study on Regionalization of Wild Ziziphus jujuba var.spinosa in Shanxi Province
Junxi ZHAO ; Yuerong ZHANG ; Xia JIANG ; Panpan SHI ; Haixian ZHAN ; Chenhui DU
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(8):6-11
Objective To establish the distribution zoning of Ziziphus jujuba var.spinosa in Shanxi Province;To help the development of Z.jujuba var.spinosa industry in Shanxi Province.Methods Combined with the information of longitude and latitude of sample points from the forth national survey resources and environment factors data in Grid Database of Spatial Information of TCM Resources,the MaxEnt model and ArcGIS were applied to analyze the main environmental factors affecting the suitability distribution of Z.jujuba var.spinosa.Results Dominant ecological factors for the suitability distribution of Z.Jujuba var.spinosa were vegetation type,lowest temperature of coldest month,monthly precipitation in November,monthly precipitation in October,altitude,and slope.The reclassified suitability grid data of ArcGIS software showed that Z.jujuba var.spinosa suitability distribution area including 0.73×104 km2 of high suitability area,1.41×104 km2 of medium suitability area and 4.33×104 km2 of low suitability area.The potential suitable distribution areas of Z.jujuba var.spinosa were mainly concentrated in the central and southern Shanxi Province.Conclusion This study shows that the most suitable growth area of Z.jujuba var.spinosa is mainly located in central and southern Shanxi Province,which can provide reference for the development,utilization and standardized planting of wild resources of Z.jujuba var.spinosa.
3.Study on the Quality Regionalization of Forsythia suspensa(Thunb.)Vahl in Shanxi Province Based on MaxEnt Model and ArcGIS
Xiaoxiong SUO ; Caixia LIU ; Yimeng ZHAO ; Chenhui DU ; Lili PING ; Haixian ZHAN ; Runli HE ; Cailing SHANG ; Xiaobo ZHANG ; Tingting SHI ; Xiangping PEI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(10):1-7
Objective To establish ecological suitability zone of Forsythia suspensa(Thunb.)Vahl in Shanxi Province;To study the quality regionalization of Forsythia suspensa(Thunb.)Vahl from different producing areas in Shanxi Province;To provide reference for reasonable planting and wild tending of Forsythia suspensa(Thunb.)Vahl.Methods Maximum entropy(MaxEnt)model and ArcGIS software were used to study the ecological suitability of Forsythia suspensa(Thunb.)Vahl in Shanxi Province;By screening the main environmental factors and combining them with the content of forsythoside and forsythoside A in Forsythia suspensa(Thunb.)Vahl of different regions,a quality zoning of Forsythia suspensa Thunb.Vahl medicinal materials in Shanxi Province based on forsythoside,forsythoside A and environmental factors was constructed.Results The ecological suitable areas of Forsythia suspensa Thunb.Vahl in Shanxi Province were mainly distributed in the southern part of Shanxi Province,mainly in Linfen,Yuncheng,Changzhi,and Jincheng.The general contents of forsythoside and forsythoside A in the Forsythia suspensa(Thunb.)Vahl medicinal material were gradually reduced from southern part to northern part of Shanxi Province.The comprehensive quality was high in southern part of Shanxi Province,mainly in Linfen,Changzhi,Yuncheng and Jincheng.Conclusion The results of this study are consistent with the actual survey.The southern part of Shanxi province is a suitable planting area for high quality Forsythia suspensa(Thunb.)Vahl,which provides a reference for the standardized planting and wild tending of Forsythia suspensa(Thunb.)Vahl.
4.Optimization of processing technology and quality characterization of wine-steamed Taxillus chinensis
Huifeng LI ; Hui LI ; Shuang MENG ; Xiaotao WANG ; Zhiwei WANG ; Xiangpeng KONG ; Haixian ZHAN ; Yingli WANG
China Pharmacy 2024;35(11):1320-1326
OBJECTIVE To optimize the steaming and processing technology of wine-steamed Taxillus chinensis, and to characterize its quality. METHODS Using the content of avicularin, quercitrin, quercetin and appearance traits as evaluation indicators, the analytic hierarchy process (AHP)-entropy weight method was used to determine the weights of each indicator, and the comprehensive scores of those indicators were used as response values. Box-Behnken response surface method was used to investigate the effects of solid-liquid ratio (g/mL), soaking time, and steaming time on the processing technology of wine-steamed T. chinensis, optimize the best processing technology, and verify it. Fifteen batches of T. chinensis decoction pieces from different origins were used to prepare wine-steamed T. chinensis using the best processing technology, and their qualities were characterized. RESULTS The optimal processing technology for wine-steamed T. chinensis was to take 100 g of T. chinensis decoction pieces, add 20 mL of yellow wine, seal and moisten for 2 h, steam at normal pressure for 1 h, take out and dry at 50 ℃. The surface of wine-steamed T. chinensis prepared by the optimal processing technology was reddish brown or brownish, and its powder was dark brown, with a hard or brittle texture that was easy to break, and had a slight aroma of alcohol, and an astringent taste. Results of microscopic and thin-layer identification for the stem cross-section of wine-steamed T. chinensis were the same as those of raw T. chinensis. The contents of moisture, total ash and acid-insoluble ash were 3.92%-8.75%, 2.27%-5.08%, and 0.19%-0.82%, respectively; the contents of water-soluble extract were 11.28%-18.56%, and the contents of alcohol-soluble extract were 3.36%-8.58%; the contents of avicularin, quercitrin, and quercetin were 0.22-1.64, 0.26-2.45, and 0.01-0.38 mg/g, respectively. CONCLUSIONS This study successfully optimized the processing technology of wine-steamed T. chinensis and preliminarily characterized its quality, which can provide reference for the standardized processing and establishment of quality standards for wine-steamed T. chinensis decoction mail:wyl@sxtcm.edu.cn pieces.
5.Optimization of processing technology and quality characterization of wine-steamed Taxillus chinensis
Huifeng LI ; Hui LI ; Shuang MENG ; Xiaotao WANG ; Zhiwei WANG ; Xiangpeng KONG ; Haixian ZHAN ; Yingli WANG
China Pharmacy 2024;35(11):1320-1326
OBJECTIVE To optimize the steaming and processing technology of wine-steamed Taxillus chinensis, and to characterize its quality. METHODS Using the content of avicularin, quercitrin, quercetin and appearance traits as evaluation indicators, the analytic hierarchy process (AHP)-entropy weight method was used to determine the weights of each indicator, and the comprehensive scores of those indicators were used as response values. Box-Behnken response surface method was used to investigate the effects of solid-liquid ratio (g/mL), soaking time, and steaming time on the processing technology of wine-steamed T. chinensis, optimize the best processing technology, and verify it. Fifteen batches of T. chinensis decoction pieces from different origins were used to prepare wine-steamed T. chinensis using the best processing technology, and their qualities were characterized. RESULTS The optimal processing technology for wine-steamed T. chinensis was to take 100 g of T. chinensis decoction pieces, add 20 mL of yellow wine, seal and moisten for 2 h, steam at normal pressure for 1 h, take out and dry at 50 ℃. The surface of wine-steamed T. chinensis prepared by the optimal processing technology was reddish brown or brownish, and its powder was dark brown, with a hard or brittle texture that was easy to break, and had a slight aroma of alcohol, and an astringent taste. Results of microscopic and thin-layer identification for the stem cross-section of wine-steamed T. chinensis were the same as those of raw T. chinensis. The contents of moisture, total ash and acid-insoluble ash were 3.92%-8.75%, 2.27%-5.08%, and 0.19%-0.82%, respectively; the contents of water-soluble extract were 11.28%-18.56%, and the contents of alcohol-soluble extract were 3.36%-8.58%; the contents of avicularin, quercitrin, and quercetin were 0.22-1.64, 0.26-2.45, and 0.01-0.38 mg/g, respectively. CONCLUSIONS This study successfully optimized the processing technology of wine-steamed T. chinensis and preliminarily characterized its quality, which can provide reference for the standardized processing and establishment of quality standards for wine-steamed T. chinensis decoction mail:wyl@sxtcm.edu.cn pieces.