1.In vitro antimicrobial activity of mangrove plant Sonneratia alba
Shahbudin SAAD ; Muhammad TAHER ; Deny SUSANTI ; Haitham QARALLEH
Asian Pacific Journal of Tropical Biomedicine 2012;(6):427-429
Objective:To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba). Methods: The antimicrobial activity was evaluated using disc diffusion and microdilution methods against six microorganisms. Soxhlet apparatus was used for extraction with a series of solvents, n-hexane, ethyl acetate and methanol in sequence of increasing polarity. Results:Methanol extract appeared to be the most effective extract while n-hexane extract showed no activity. The antimicrobial activities were observed against the gram positive bacteria Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus), the gram negative Escherichia coli (E. coli) and the yeast Cryptococcus neoformans. Pseudomonas aeruginosa and Candida albicans appeared to be not sensitive to the concentrations tested since no inhibition zone was observed. E. coli (17.5 mm) appeared to be the most sensitive strain followed by S. aureus (12.5 mm) and B. cereus (12.5 mm). Conclusions:From this study, it can be concluded that S. alba exhibits antimicrobial activities against certain microorganisms.
2.Thymol Rich Thymbra capitata Essential Oil Inhibits Quorum Sensing, Virulence and Biofilm Formation of Beta Lactamase Producing Pseudomonas aeruginosa
Natural Product Sciences 2019;25(2):172-180
Infections with Pseudomonas aeruginosa are difficult to treat not only because it is often associated with multidrug-resistant infections but also it is able to form biofilm. The aim of this study was to evaluate the antibiofilm and anti-Quorum Sensing (QS) activities of Thymbra capitata essential oils (EOs) against Beta Lactamase (BL) producing P. aeruginosa and the reference strain P. aeruginosa 10145. GC/MS analysis showed that thymol (23.25%) is the most dominant compound in T. capitata EOs. The MICs of T. capitata EOs against P. aeruginosa (BL) and P. aeruginosa 10145 were 1.11%. At sub MIC (0.041, 0.014 and 0.0046%), the EOs of T. capitata remarkably inhibited the biofilm formation of both strains tested and complete inhibition of the biofilm formation was reported at 0.041%. The EOs of T. capitata were found to inhibit the swarming motility, aggregation ability and hydrophobic ability of P. aeruginosa (BL) and P. aeruginosa 10145. Interestingly, the EOs of T. capitata reduce the production of three secreted virulence factors that regulated by QS system including pyocyanin, rhamnolipids and LasA protease. The potent antibiofilm and anti-QS activities of T. capitata EOs can propose it as a new antibacterial agent to control pseudomonas infections.
beta-Lactamases
;
Biofilms
;
Oils, Volatile
;
Pseudomonas aeruginosa
;
Pseudomonas Infections
;
Pseudomonas
;
Pyocyanine
;
Quorum Sensing
;
Thymol
;
Virulence Factors
;
Virulence