1.The Requirements of Medical Device Market Access in India.
Shaoyan QIN ; Tao CUI ; Haisong YIN
Chinese Journal of Medical Instrumentation 2016;40(1):61-63
This paper introduces the premarket registration procedures and the post market regulatory requirements in India. According to Indian medical device act and related medical regulations on medical device, this is a preliminary discussion on the registration management system to provide referance for foreign medical device to enter India market.
Equipment and Supplies
;
economics
;
standards
;
India
2.Requirements of Korea for admittance to medical device market
Shaoyan QIN ; Tao CUI ; Haisong YIN
Chinese Medical Equipment Journal 2015;36(5):124-126,131
The concept and classification of Korean medical device were introduced. The phases for Korea to import medical device include selecting Korean certification holder, hospital admittance, device marketing and supervision after marketing. China and other countries can find references to export medical devices into Korea.
3.Research on medical application of bacterial cellulose as nano-biomaterials .
Weihua TANG ; Shiru JIA ; Yuanyuan JIA ; Haisong YIN
Journal of Biomedical Engineering 2014;31(4):927-929
Bacterial cellulose (BC) is a high-purity nanometer cellulose secreted by some bacteria. Compared with plant cellulose, it possesses an array of unique properties, including high crystallinity, high water content, good bio-compatibility, high mechanical strength and an ultra-fine fiber network. BC is prosperous as a new type of biomedical material, which has medical applications such as wound dressing, artificial skin, artificial blood vessels and tissue engineering scaffolds. There are, however, some problems to be solved on the large-scale application of BC, such as the high cost, low yield, and poor mechanical stability and so on.
Bacteria
;
chemistry
;
Bandages
;
Biocompatible Materials
;
Cellulose
;
chemistry
;
Nanostructures
;
chemistry
;
Skin, Artificial
;
Tissue Engineering
;
Tissue Scaffolds
4.Co-editing PINK1 and DJ-1 Genes Via Adeno-Associated Virus-Delivered CRISPR/Cas9 System in Adult Monkey Brain Elicits Classical Parkinsonian Phenotype.
Hao LI ; Shihao WU ; Xia MA ; Xiao LI ; Tianlin CHENG ; Zhifang CHEN ; Jing WU ; Longbao LV ; Ling LI ; Liqi XU ; Wenchao WANG ; Yingzhou HU ; Haisong JIANG ; Yong YIN ; Zilong QIU ; Xintian HU
Neuroscience Bulletin 2021;37(9):1271-1288
Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.
Animals
;
Brain
;
CRISPR-Cas Systems/genetics*
;
Dependovirus/genetics*
;
Haplorhini
;
Phenotype
;
Protein Kinases/genetics*
5. Co-editing PINK1 and DJ-1 Genes Via Adeno-Associated Virus-Delivered CRISPR/Cas9 System in Adult Monkey Brain Elicits Classical Parkinsonian Phenotype
Hao LI ; Shihao WU ; Xia MA ; Jing WU ; Wenchao WANG ; Yingzhou HU ; Xintian HU ; Shihao WU ; Xiao LI ; Tianlin CHENG ; Zhifang CHEN ; Zilong QIU ; Xia MA ; Zilong QIU ; Xintian HU ; Longbao LV ; Xintian HU ; Ling LI ; Liqi XU ; Haisong JIANG ; Yong YIN ; Zilong QIU
Neuroscience Bulletin 2021;37(9):1271-1288
Whether direct manipulation of Parkinson’s disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6–10 months), and thus provides a practical transgenic monkey model for future PD studies.