1.Cash Prediction By Stages and S hort-term Financing Planning of the Hospital
Chinese Health Economics 2013;(12):101-103
With the expanse of hospital insurance coverage, the scale of receivables in hospital would increase. Original inconspicuous or non-existent money problems gradually emerged, which put forward new challenges for the operation capital management in the hospital. The negative factors in hospital operation capital management are analyzed , and two aspects of wok are needed: firstly, to predict cash by stages to improve initiative and planning of capital operation;secondly, to implement financing plan under the circumstances of insufficient cash is expected, through utilizing the convenience brought by supply chain financing and commercial credit, to reduce the occupation of owned fund and improve the efficiency of fund arranging operation to achieve the innovation of financing management.
2.Effect of Banxia Xiexintang-containing Intestinal Absorption Solution on Migration and Invasion of PMN-MDSCs in Gastric Cancer Microenvironment
Jingjing WEI ; Zhongbo ZHU ; Xiping LIU ; Peiqing LI ; Qiming CHEN ; Lirong DAI ; Lijuan SHI ; Haijing DUAN ; Qingmiao WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(10):48-57
ObjectiveTo observe the effect of Banxia Xiexintang containing intestinal absorption solution (BXCIAS) on migration and invasion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in gastric cancer microenvironment. MethodThe complex solution (containing 0.63 g·mL-1 crude drug) was prepared. Gastric cancer cells were subjected to non-contact co-culture with PMN-MDSCs in Transwell chamber to create gastric cancer microenvironment. Cell counting kit-8 (CCK-8) assay was used to screen the optimal intervention concentration and time of BXCIAS on PMN-MDSCs for subsequent experiment. The blank group, model group, FAK inhibitor group, and BXCIAS groups (26%, 18%, and 10%) were designed. Scratch assay and Transwell assay were employed to detect the migration and invasion ability of PMN-MDSCs, and enzyme-linked immunosorbent assay (ELISA) to measure the expression of vascular endothelial cell growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in tumor microenvironment. The expression levels of PMN-MDSCs pathway-related proteins FAK, phosphorylated (p)-FAK, protein tyrosine kinase (Src), and p-Src were detected by Western blot. ResultThe inhibition rates of PMN-MDSCs by 5%, 50%, 75%, and 100% BXCIAS at 48 h were higher than those at 24 h (P<0.05, P<0.01). The inhibition rate of PMN-MDSCs by 50% BXCIAS at 72 h was lower than that at 48 h (P<0.01), and the inhibition rates by 5% and 100% BXCIAS at 72 h were higher than those at 48 h (P<0.05, P<0.01). There was no significant difference in the inhibition rate by other concentration levels at 48 h. The half-maximal inhibitory concentration (IC50) at 48 h was 18.09%, indicating that 18% BXCIAS and 48 h were the optimal concentration and time, respectively. The migration distance of PMN-MDSCs was large (P<0.01), and the number of migrating and invading cells increased (P<0.01) in the mode group compared with those in the blank group. Compared with model group, FAK inhibitor and BXCIAS at different concentration decreased the migration distance of PMN-MDSCs (P<0.01), and the number of migrating and invading cells (P<0.01), especially the 26% BXCIAS (P<0.01). The expression of PMN-MDSCs pathway-related proteins FAK, p-FAK, Src and p-Src (P<0.01) and the expression of VEGF and MMP-9 (P<0.01) were higher in the model group than in the blank group. Compared with model group, FAK inhibitor and BXCIAS (26%, 18%, 10%) decreased the expression of FAK, p-FAK, and Src (P<0.01), and FAK inhibitor and 18% BXCIAS reduced the expression of p-Src (P<0.01), and the expression of VEGF and MMP-9 (P<0.01). ConclusionBXCIAS can inhibit the migration and invasion of PMN-MDSCs by down-regulating the expression of FAK, p-FAK, Src, and p-Src proteins in the FAK signaling pathway of PMN-MDSCs in gastric cancer microenvironment.
3.Effect of Banxia Xiexintang-containing Intestinal Absorption Solution on PMN-MDSCs Apoptosis in Gastric Cancer Microenvironment
Jingjing WEI ; Zhongbo ZHU ; Xiping LIU ; Peiqing LI ; Qiming CHEN ; Lirong DAI ; Lijuan SHI ; Haijing DUAN ; Qingmiao WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(10):58-64
ObjectiveTo observe the effect of Banxia Xiexintang (BXT)-containing intestinal absorption solution on the apoptosis of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in gastric cancer microenvironment. MethodBXT-containing intestinal absorption solution was prepared, and gastric cancer cells and PMN-MDSCs were non-contact co-cultured in Transwell chamber to establish gastric cancer microenvironment. Cell counting kit-8 (CCK-8) assay was used to screen the optimal intervention concentration and time of 0-100% BXT-containing intestinal absorption solution prepared by 0.63 g·mL-1 reconstitution solution. Cells were classified into blank group, model group, oxaliplatin group (10 mg·L-1), and BXT (26%, 18%, 10% BXT-containing intestinal absorption solution) group, and the apoptosis of PMN-MDSCs was detected by flow cytometry. The expression of apoptosis-related B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and cysteine-aspartic acid protease-3 (Caspase-3) in PMN-MDSCs was detected by Western blot. ResultAfter treatment for 24 h and 48 h, the PMN-MDSCs-inhibiting rate was increased by 5%, 50%, 75%, and 100% BXT-containing intestinal absorption solution compared with that in the blank group (P<0.05, P<0.01). At 72 h, the PMN-MDSCs-inhibiting rate by 50% BXT-containing intestinal absorption solution was lower than that at 48 h (P<0.01), and the PMN-MDSCs-inhibiting rate by 5%, 75%, and 100% BXT-containing intestinal absorption solution showed no significant difference from that at 48 h. Moreover, the half-maximal inhibitory concentration (IC50) at 48 h was 18.40%. Thus, 18% BXT-containing intestinal absorption solution and 48 h were the optimal intervention concentration and time. The survival rate of PMN-MDSCs in model group was higher than that in the blank group (P<0.05), and the apoptosis rate was lower than that in the blank group (P<0.05). Compared with model group, BXT containing intestinal absorption solution lowered the survival rate and raised apoptosis rate of PMN-MDSCs (P<0.05), particularly the 26% BXT-containing intestinal absorption solution (P<0.05). The expression of Bax and Caspase-3 in PMN-MDSCs was lower in the model group than in the blank group (P<0.05), and the expression of Bcl-2 was higher in the model group than in the blank group (P<0.05). The expression of Caspase-3 in PMN-MDSCs increased (P<0.05) and the expression of Bcl-2 decreased (P<0.05) in oxaliplatin group and BXT group compared with those in the model group. The expression of Bax rose in oxaliplatin group and BXT group (10% BXT-containing intestinal absorption solution) (P<0.05). ConclusionBXT can induce the apoptosis of PMN-MDSCs by regulating the expression of apoptosis-related proteins Bax, Caspase-3, and Bcl-2 in gastric cancer microenvironment.