1.Current Status and Optimization Strategies for Investigator Initiated Trial on Traditional Chinese Medicine in the Treatment of Malignant Tumors Conducted by Western Medicine Institutions
Xuechen GENG ; Yanmei LIU ; Qianqian BU ; Qinchang ZHANG ; Dong ZHANG ; Yuquan TAO ; Liu LI ; Ling LI ; Haibo CHENG
Journal of Traditional Chinese Medicine 2025;66(9):878-882
Investigator initiated trial (IIT) represents a primary format for clinical research in traditional Chinese medicine (TCM). As key implementation sites for TCM-based IIT targeting malignant tumors, western medicine institutions often face unique challenges in conducting such studies, which limit their feasibility and standardization. This paper reviews the registration status of TCM-based IIT for malignancies conducted in western medical institutions and analyzes key difficulties, including complex project initiation and management processes, limited TCM knowledge and skills among western medicine physicians, and relatively low patient acceptance of TCM. From a practical perspective, the study proposes several optimization strategies. These include improving the review and management mechanisms of TCM-related IIT within western medical institutions, establishing multidisciplinary clinical research teams that integrate TCM and western medicine, and enhancing investigators' training in TCM theory and clinical skills. Additionally, the study suggests standardizing IIT operational procedures, objectifying the collection of TCM diagnostic information, refining subject recruitment methods, and increasing TCM involvement in patient follow-up and management. These investigator-oriented, TCM-featured, and operable strategies aim to promote the high-quality development of TCM-based IIT in western medicine institutions and enhance the clinical application of TCM.
2.Plasma Metabolomic Analysis of Colorectal Cancer Patients with Spleen-Qi Deficiency and Damp-heat Stasis-toxin Syndrome Based on UPLC-Q-Exactive-Orbitrap-MS
Siting MENG ; Lihuiping TAO ; Dong ZHANG ; Qinchang ZHANG ; Yiping FAN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):130-137
ObjectiveTo observe and analyze the plasma metabolite differences among colorectal cancer patients with spleen-qi deficiency, damp-heat stasis-toxin syndrome(SRYD), non-spleen-qi deficiency, damp-heat stasis-toxin syndrome(non-SRYD), and normal human beings(Normal), aiming to identify unique metabolites specific to SRYD colorectal cancer patients and their potential biomarkers. MethodsBased on the diagnostic criteria of SRYD and non-SRYD colorectal cancer, 30 patients were included, including 10 patients with SRYD colorectal cancer and 20 patients with non-SRYD colorectal cancer, while 10 individuals were recruited for the Normal group. Metabolome sequencing of plasma from the three groups was performed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS). Multivariate statistical analysis were performed by principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), and the intergroup differential metabolites were identified based on variable importance in the projection(VIP) value>1 and t-test P<0.05. And pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG) was performed to explore the metabolites and metabolic pathways specific to SRYD colorectal cancer patients. ResultsMetabolome sequencing results showed some differences in metabolic profiles between the groups. A total of 111 plasma differential metabolites were found in the SRYD group and the Normal group, of which 31 were up-regulated and 80 were down-regulated, mainly including stearoyl lysophosphatidylcholine, indole-3-acrylic acid, and dehydroepiandrosterone sulfate(P<0.05). The non-SRYD group exhibited 97 differentially expressed metabolites compared to the Normal group, with 36 up-regulated and 61 down-regulated, mainly including stearoyl lysophosphatidylcholine, sphingosine, and palmitoyl lysophosphatidylcholine(P<0.05). And the SRYD group exhibited 19 differentially expressed metabolites compared to the non-SRYD group, of which 5 were up-regulated and 14 were down-regulated, mainly including dihydrosphingosine, palmitic acid, and linoleoylethanolamide(P<0.05). The significant differential metabolites were subjected to KEGG analysis to obtain significantly enriched metabolic pathways in each group, and the results showed that 11 metabolic pathways such as primary bile acid synthesis, cholesterol metabolism and bile secretion were differential signaling pathways specific to SRYD colorectal cancer. Further retrieval of the above key signaling pathways showed that bile acids were up-regulated in both bile secretion and primary bile acid synthesis pathways, and there was a trend of up-regulation of glycochenodeoxycholic acid, taurochenodeoxycholic acid, and chenodeoxycholic acid. ConclusionPrimary bile acid synthesis, cholesterol metabolism, and bile secretion-related pathways may be differential signaling pathways specific to SRYD colorectal cancer, and bile acid is a core molecule in the metabolic pathway, which can serve as potential biomarkers closely related to the development and progression of SRYD colorectal cancer.
3.Plasma Metabolomic Analysis of Colorectal Cancer Patients with Spleen-Qi Deficiency and Damp-heat Stasis-toxin Syndrome Based on UPLC-Q-Exactive-Orbitrap-MS
Siting MENG ; Lihuiping TAO ; Dong ZHANG ; Qinchang ZHANG ; Yiping FAN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):130-137
ObjectiveTo observe and analyze the plasma metabolite differences among colorectal cancer patients with spleen-qi deficiency, damp-heat stasis-toxin syndrome(SRYD), non-spleen-qi deficiency, damp-heat stasis-toxin syndrome(non-SRYD), and normal human beings(Normal), aiming to identify unique metabolites specific to SRYD colorectal cancer patients and their potential biomarkers. MethodsBased on the diagnostic criteria of SRYD and non-SRYD colorectal cancer, 30 patients were included, including 10 patients with SRYD colorectal cancer and 20 patients with non-SRYD colorectal cancer, while 10 individuals were recruited for the Normal group. Metabolome sequencing of plasma from the three groups was performed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS). Multivariate statistical analysis were performed by principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), and the intergroup differential metabolites were identified based on variable importance in the projection(VIP) value>1 and t-test P<0.05. And pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG) was performed to explore the metabolites and metabolic pathways specific to SRYD colorectal cancer patients. ResultsMetabolome sequencing results showed some differences in metabolic profiles between the groups. A total of 111 plasma differential metabolites were found in the SRYD group and the Normal group, of which 31 were up-regulated and 80 were down-regulated, mainly including stearoyl lysophosphatidylcholine, indole-3-acrylic acid, and dehydroepiandrosterone sulfate(P<0.05). The non-SRYD group exhibited 97 differentially expressed metabolites compared to the Normal group, with 36 up-regulated and 61 down-regulated, mainly including stearoyl lysophosphatidylcholine, sphingosine, and palmitoyl lysophosphatidylcholine(P<0.05). And the SRYD group exhibited 19 differentially expressed metabolites compared to the non-SRYD group, of which 5 were up-regulated and 14 were down-regulated, mainly including dihydrosphingosine, palmitic acid, and linoleoylethanolamide(P<0.05). The significant differential metabolites were subjected to KEGG analysis to obtain significantly enriched metabolic pathways in each group, and the results showed that 11 metabolic pathways such as primary bile acid synthesis, cholesterol metabolism and bile secretion were differential signaling pathways specific to SRYD colorectal cancer. Further retrieval of the above key signaling pathways showed that bile acids were up-regulated in both bile secretion and primary bile acid synthesis pathways, and there was a trend of up-regulation of glycochenodeoxycholic acid, taurochenodeoxycholic acid, and chenodeoxycholic acid. ConclusionPrimary bile acid synthesis, cholesterol metabolism, and bile secretion-related pathways may be differential signaling pathways specific to SRYD colorectal cancer, and bile acid is a core molecule in the metabolic pathway, which can serve as potential biomarkers closely related to the development and progression of SRYD colorectal cancer.
4.Engineering and targeting potential of CAR NK cells in colorectal cancer.
Muhammad Babar KHAWAR ; Ali AFZAL ; Shuangshuang DONG ; Yue SI ; Haibo SUN
Chinese Medical Journal 2025;138(13):1529-1539
Colorectal cancer (CRC), a major global health concern, necessitates innovative treatments. Chimeric antigen receptor (CAR) T cells have shown promises, yet they grapple with challenges. The spotlight pivots to the rising heroes: CAR natural killer (NK) cells, offering advantages such as higher safety profiles, cost-effectiveness, and efficacy against solid tumors. Nevertheless, the specific mechanisms underlying CAR NK cell trafficking and their interplay within the complex tumor microenvironment require further in-depth exploration. Herein, we provide insights into the design and engineering of CAR NK cells, antigen targets in CRC, and success in overcoming resistance mechanisms with an emphasis on the potential for clinical trials.
Colorectal Neoplasms/immunology*
;
Humans
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/genetics*
;
Immunotherapy, Adoptive/methods*
;
Tumor Microenvironment/immunology*
;
Animals
5.EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis.
Yang CHEN ; Shanshan DONG ; Xin ZENG ; Qing XU ; Mingwei LIANG ; Guangneng LIAO ; Lan LI ; Bin SHEN ; Yanrong LU ; Haibo SI
Chinese Medical Journal 2025;138(1):79-92
BACKGROUND:
Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
METHODS:
The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats.
RESULTS:
Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis.
CONCLUSIONS
A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Osteoarthritis, Knee/pathology*
;
Chondrocytes/metabolism*
;
Pyroptosis/physiology*
;
HMGB1 Protein/genetics*
;
MicroRNAs/metabolism*
;
Endoplasmic Reticulum Stress/genetics*
;
Humans
;
Animals
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Middle Aged
6.Single-cell RNA sequencing reveals Shen-Bai-Jie-Du decoction retards colorectal tumorigenesis by regulating the TMEM131-TNF signaling pathway-mediated differentiation of immunosuppressive dendritic cells.
Yuquan TAO ; Yinuo MA ; Limei GU ; Ye ZHANG ; Qinchang ZHANG ; Lisha ZHOU ; Jie PAN ; Meng SHEN ; Xuefei ZHUANG ; Linmei PAN ; Weixing SHEN ; Chengtao YU ; Dan DONG ; Dong ZHANG ; Tingsheng LING ; Yang SUN ; Haibo CHENG
Acta Pharmaceutica Sinica B 2025;15(7):3545-3560
Colorectal tumorigenesis generally progresses from adenoma to adenocarcinoma, accompanied by dynamic changes in the tumor microenvironment (TME). A randomized controlled trial has confirmed the efficacy and safety of Shen-Bai-Jie-Du decoction (SBJDD) in preventing colorectal tumorigenesis. However, the mechanism remains unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) to investigate the dynamic evolution of the TME and validated cell infiltration with multiplex immunohistochemistry and flow cytometry. Bulk RNA sequencing was utilized to assess the underlying mechanisms. Our results constructed the mutually verifiable single-cell transcriptomic atlases in Apc Min/+ mice and clinical patients. There was a marked accumulation of CCL22+ dendritic cells (DCs) and an enhanced immunosuppressive action, which SBJDD and berberine reversed. Combined treatment with cholesterol and lipopolysaccharide induced characteristic gene expression of CCL22+ DCs, which may represent "exhausted DCs". Intraperitoneal injection of these DCs after SBJDD treatment eliminated its therapeutic effects. TMEM131 derived CCL22+ DCs generation by TNF signaling pathway and may be a potential target of berberine in retarding colorectal tumorigenesis. These findings emphasize the role of exhausted DCs and the regulatory mechanisms of SBJDD and berberine in colorectal cancer (CRC), suggesting that the multi-component properties of SBJDD may help restore TME homeostasis and offer novel cancer therapy.
7.IMM-H007 promotes hepatic cholesterol and triglyceride metabolism by activating AMPKα to attenuate hypercholesterolemia.
Jiaqi LI ; Mingchao WANG ; Kai QU ; Yuyao SUN ; Zequn YIN ; Na DONG ; Xin SUN ; Yitong XU ; Liang CHEN ; Shuang ZHANG ; Xunde XIAN ; Suowen XU ; Likun MA ; Yajun DUAN ; Haibo ZHU
Acta Pharmaceutica Sinica B 2025;15(8):4047-4063
Hypercholesterolemia is a significant risk factor for the development of atherosclerosis. 2',3',5'-Tri-O-acetyl-N 6-(3-hydroxyphenyl) adenosine (IMM-H007), a novel AMPK agonist, has shown protective effects in metabolic diseases. However, its impact on cholesterol and triglyceride metabolism in hypercholesterolemia remains unclear. In this study, we aimed to elucidate the effects and specific mechanisms by which IMM-H007 regulates cholesterol and triglyceride metabolism. To achieve this goal, we used Apoe -/- and Ldlr -/- mice to establish a hypercholesterolemia/atherosclerosis model. Additionally, hepatocyte-specific Ampka1/2 knockout mice were subjected to a 5-week high-cholesterol diet to establish hypercholesterolemia, while atherosclerosis was induced via AAV-PCSK9 injection combined with a 16-week high-cholesterol diet. Our results demonstrated that IMM-H007 improved cholesterol and triglyceride metabolism in mice with hypercholesterolemia. Mechanistically, IMM-H007 modulated the AMPKα1/2-LDLR signaling pathway, increasing cholesterol uptake in the liver. Furthermore, IMM-H007 activated the AMPKα1-FXR pathway, promoting the conversion of hepatic cholesterol to bile acids. Additionally, IMM-H007 prevented hepatic steatosis by activating the AMPKα1/2-ATGL pathway. In conclusion, our study suggests that IMM-H007 is a promising therapeutic agent for improving hypercholesterolemia and atherosclerosis through the activation of AMPKα.
8.Supramolecular prodrug inspiried by the Rhizoma Coptidis - Fructus Mume herbal pair alleviated inflammatory diseases by inhibiting pyroptosis.
Wenhui QIAN ; Bei ZHANG ; Ming GAO ; Yuting WANG ; Jiachen SHEN ; Dongbing LIANG ; Chao WANG ; Wei WEI ; Xing PAN ; Qiuying YAN ; Dongdong SUN ; Dong ZHU ; Haibo CHENG
Journal of Pharmaceutical Analysis 2025;15(2):101056-101056
Sustained inflammatory responses are closely related to various severe diseases, and inhibiting the excessive activation of inflammasomes and pyroptosis has significant implications for clinical treatment. Natural products have garnered considerable concern for the treatment of inflammation. Huanglian-Wumei decoction (HLWMD) is a classic prescription used for treating inflammatory diseases, but the necessity of their combination and the exact underlying anti-inflammatory mechanism have not yet been elucidated. Inspired by the supramolecular self-assembly strategy and natural drug compatibility theory, we successfully obtained berberine (BBR)-chlorogenic acid (CGA) supramolecular (BCS), which is an herbal pair from HLWMD. Using a series of characterization methods, we confirmed the self-assembly mechanism of BCS. BBR and CGA were self-assembled and stacked into amphiphilic spherical supramolecules in a 2:1 molar ratio, driven by electrostatic interactions, hydrophobic interactions, and π-π stacking; the hydrophilic fragments of CGA were outside, and the hydrophobic fragments of BBR were inside. This stacking pattern significantly improved the anti-inflammatory performance of BCS compared with that of single free molecules. Compared with free molecules, BCS significantly attenuated the release of multiple inflammatory mediators and lipopolysaccharide (LPS)-induced pyroptosis. Its anti-inflammatory mechanism is closely related to the inhibition of intracellular nuclear factor-kappaB (NF-κB) p65 phosphorylation and the noncanonical pyroptosis signalling pathway mediated by caspase-11.
9.Mid-to-long term fate of neo-aortic root after arterial switch operation for Taussig-Bing anomaly: A retrospective study in a single center
Mingjun GU ; Dian CHEN ; Renjie HU ; Jie HU ; Wei DONG ; Wen ZHANG ; Qi JIANG ; Yifan ZHU ; Haibo ZHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(04):504-509
Objective To explore growth pattern of neo-aortic root as well as development of neo-aortic regurgitation after arterial switch operation (ASO) for Taussig-Bing anomaly. Methods From 2002 to 2017, the patients who received ASO, and were discharged alive from Shanghai Children’s Medical Center and followed up for more than 3 years were retrospectively involved in this study. Results A total of 127 patients were enrolled. There were 98 (77.2%) males, the median age at ASO was 73.0 d and the average weight was 4.7 kg. Forty-five (35.4%) children were complicated with mild or mild-to-moderate pulmonary insufficiency (PI) before ASO. The average follow-up time was 7.0 years. During the follow-up, 14 (11.0%) children presented moderate or greater neo-aortic regurgitation (neo-AR). The diameter of neo-aortic annulus and sinus of Valsalva was beyond normal range during the entire follow-up. The average diameter of neo-aortic annulus was 18.0 mm at 5 years and 20.5 mm at 10 years. The average diameter of sinus of Valsalva was 25.9 mm at 5 years and 31.1 mm at 10 years. Neo-AR continued to develop over time. The diameter of children who developed moderate or greater neo-AR was constantly larger than that of children who did not (χ2=18.3, P<0.001). Preoperative mild or mild-to-moderate PI was an independent risk factor for the development of moderate or greater neo-AR during mid-to-long term follow-up (c-HR=3.46, P=0.03). Conclusion The diameters of neo-aortic annulus and sinus of Valsalva of Taussig-Bing children who receive ASO repair continue to expand without normalization. The dilation of annulus correlates with the development of neo-AR. PI before ASO repair increases the risk of neo-AR development.
10.Progress in single cell isolation techniques in forensic science
Kesheng SUN ; Haoyu GU ; Feng SONG ; Yingchun DONG ; Haibo LUO
Chinese Journal of Forensic Medicine 2024;39(3):339-348
Forensic examination materials are often plagued by trace amounts,mixes,and other factors.Single-cell isolation technology can solve these forensic problems to some extent by studying each cell individually to obtain comprehensive and reliable information.There are many single cell isolation techniques available in research reports,such as flow cytometry,laser capture microdissection,etc.This review will summarize the most common single cell isolation techniques used by researchers today,and summarize the application of various techniques in forensic science,summarize the selection strategies for single-cell isolation techniques in different scenarios based on cost,degree of automation,yield,cell damage rate,and the availability of relevant forensic platforms,and finally explore the forensic application prospects of single-cell isolation techniques.In general,single cell isolation can be applied to multiple fields such as mixed stain examination,post-mortem time inference,pre-and post-mortem injury determination,forensic toxicology analysis,forensic microbiology and forensic anthropology.The development of single cell isolation technology is of great value to the application of forensic medicine,and will provide a new way of deciphering difficult examination materials.

Result Analysis
Print
Save
E-mail