1.Electrophysiological characterization of long QT syndrome associated mutations V630A and N633S.
Hai-ru SHE ; Si-yong TENG ; Jie-lin PU ; Zheng-lu SHANG ; Ru-tai HUI
Chinese Journal of Cardiology 2006;34(6):523-527
OBJECTIVETo identify the electrophysiological properties of long-QT syndrome (LQTS) associated missense mutations in the outer mouth of the HERG potassium channel in vitro.
METHODSMutations V630A and N633S were constructed by Megaprimer PCR method and cRNA were produced by T7 RNA polymerase. The electrophysiological properties of the mutation were investigated in the Xenopus oocyte heterologous expression system.
RESULTSCoexpression of mutant and wild-type HERG subunits caused a dominant-negative effect, and the currents were significantly decreased. Compared with wild-type HERG channels, V630A and N633S mutations were related to decreased time constants for inactivation for V630A/WT and N633S/WT at all potentials, reduced slope conductance and the voltage dependence of steady-state inactivation was shifted to negative potentials for V630A/WT and N633S/WT.
CONCLUSIONPresent study shows that LQTS associated missense mutations located in the outer mouth of HERG cause a dominant-negative effect and alterations in steady-state voltage dependence of channel gating of heteromultimeric channels suggesting a reduction in expressional current might be one of the pathophysiologic mechanisms of LQTS.
Animals ; DNA Mutational Analysis ; ERG1 Potassium Channel ; Electrocardiography ; Ether-A-Go-Go Potassium Channels ; genetics ; Humans ; Long QT Syndrome ; genetics ; Mutation, Missense ; Oocytes ; Patch-Clamp Techniques ; RNA, Complementary ; Xenopus
2.Clinical and molecular-biological study of a May-Hegglin anomaly family.
Xiu-ru SHAO ; Jia-zeng LI ; Jun MA ; Zhao-min ZHAN ; Hong LIANG ; Xi-nan SHE ; Hai-ling LU ; Lai-ci WANG ; Chui-ming JIA ; Li-jie WU ; Ming-hua JIN ; Li-jun CHEN
Chinese Journal of Hematology 2004;25(9):548-551
OBJECTIVETo study the changes of platelet in May-Hegglin anomaly (MHA) and the molecular pathogenesis mechanism.
METHODSPeripheral blood was drawn from the MHA proband, her father and her uncle. Platelet count and morphology were examined by automatic blood cell counter and microscopy, respectively. The platelet membrane protein was examined by flow cytometry. Membrane antibodies were determined by ELISA. PCR was used to amplify the exons 25, 31 approximately 32, 38 and 40 of the MYH 9 gene in the MHA patient and her diseased father. Furthermore, PCR products were sequenced, a specific point mutation was identified and inclusions (Dohle's body) in the neutrophil was detected by indirect immunofluorescence technique.
RESULTSIt was proved that in MHA patients, platelet count was higher by cell counter than by microscope (P < 0.01). Giant platelet was 94% but platelet membrane proteins (CD41, CD61, CD42A, CD42b) were in normal range. Membrane antibodies was undetectable. An A5521G mutation (GAG-->AAG) in the exon 38 was found in the proband and her diseased father, resulting in a characteristic change of NMMHC-A1841 (Glutamic acid-->Arginine), which was not found in other members of the family and in normal controls. Spindle-like inclusions with fluorescence were clearly displayed in neutrophil cytoplasm.
CONCLUSIONThe molecular pathogenesis mechanism of May-Hegglin anomaly is the mutation in MYH 9 gene.
Adult ; Base Sequence ; Blood Platelets ; metabolism ; pathology ; DNA Mutational Analysis ; Enzyme-Linked Immunosorbent Assay ; Female ; Flow Cytometry ; Granulocytes ; metabolism ; pathology ; Humans ; Inclusion Bodies ; metabolism ; pathology ; Male ; Molecular Motor Proteins ; genetics ; Mutation ; Myosin Heavy Chains ; genetics ; Pedigree ; Platelet Count ; Platelet Membrane Glycoproteins ; metabolism ; Thrombocytopenia ; blood ; genetics ; pathology
3.Prevalence, awareness, treatment, and control of hypertension in the non-dialysis chronic kidney disease patients.
Ying ZHENG ; Guang-Yan CAI ; Xiang-Mei CHEN ; Ping FU ; Jiang-Hua CHEN ; Xiao-Qiang DING ; Xue-Qing YU ; Hong-Li LIN ; Jian LIU ; Ru-Juan XIE ; Li-Ning WANG ; Zhao-Hui NI ; Fu-You LIU ; Ai-Ping YIN ; Chang-Ying XING ; Li WANG ; Wei SHI ; Jian-She LIU ; Ya-Ni HE ; Guo-Hua DING ; Wen-Ge LI ; Guang-Li WU ; Li-Ning MIAO ; Nan CHEN ; Zhen SU ; Chang-Lin MEI ; Jiu-Yang ZHAO ; Yong GU ; Yun-Kai BAI ; Hui-Min LUO ; Shan LIN ; Meng-Hua CHEN ; Li GONG ; Yi-Bin YANG ; Xiao-Ping YANG ; Ying LI ; Jian-Xin WAN ; Nian-Song WANG ; Hai-Ying LI ; Chun-Sheng XI ; Li HAO ; Yan XU ; Jing-Ai FANG ; Bi-Cheng LIU ; Rong-Shan LI ; Rong WANG ; Jing-Hong ZHANG ; Jian-Qin WANG ; Tan-Qi LOU ; Feng-Min SHAO ; Feng MEI ; Zhi-Hong LIU ; Wei-Jie YUAN ; Shi-Ren SUN ; Ling ZHANG ; Chun-Hua ZHOU ; Qin-Kai CHEN ; Shun-Lian JIA ; Zhi-Feng GONG ; Guang-Ju GUAN ; Tian XIA ; Liang-Bao ZHONG ; null
Chinese Medical Journal 2013;126(12):2276-2280
BACKGROUNDData on the epidemiology of hypertension in Chinese non-dialysis chronic kidney disease (CKD) patients are limited. The aim of the present study was to investigate the prevalence, awareness, treatment, and control of hypertension in the non-dialysis CKD patients through a nationwide, multicenter study in China.
METHODSThe survey was performed in 61 tertiary hospitals in 31 provinces, municipalities, and autonomous regions in China (except Hong Kong, Macao, and Taiwan). Trained physicians collected demographic and clinical data and measured blood pressure (BP) using a standardized protocol. Hypertension was defined as systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg, and/or use of antihypertensive medications. BP < 140/90 mmHg and < 130/80 mmHg were used as the 2 thresholds of hypertension control. In multivariate logistic regression with adjustment for sex and age, we analyzed the association between CKD stages and uncontrolled hypertension in non-dialysis CKD patients.
RESULTSThe analysis included 8927 non-dialysis CKD patients. The prevalence, awareness, and treatment of hypertension in non-dialysis CKD patients were 67.3%, 85.8%, and 81.0%, respectively. Of hypertensive CKD patients, 33.1% and 14.1% had controlled BP to < 140/90 mmHg and < 130/80 mmHg, respectively. With successive CKD stages, the prevalence of hypertension in non-dialysis CKD patients increased, but the control of hypertension decreased (P < 0.001). When the threshold of BP < 130/80 mmHg was considered, the risk of uncontrolled hypertension in CKD 2, 3a, 3b, 4, and 5 stages increased 1.3, 1.4, 1.4, 2.5, and 4.0 times compared with CKD 1 stage, respectively (P < 0.05). Using the threshold of < 140/90 mmHg, the risk of uncontrolled hypertension increased in advanced stages (P < 0.05).
CONCLUSIONSThe prevalence of hypertension Chinese non-dialysis CKD patients was high, and the hypertension control was suboptimal. With successive CKD stages, the risk of uncontrolled hypertension increased.
Adult ; Aged ; Awareness ; Female ; Humans ; Hypertension ; complications ; epidemiology ; therapy ; Male ; Middle Aged ; Prevalence ; Renal Insufficiency, Chronic ; complications