2.Effect of pigment epithelium derived factor on NO and the expression of caspase-3 in retinal tissues of model rats with optic nerve crush injury
Xiao-Xiao, YAN ; Hai-Bo, JIA ; Xiao-Ling, YIN ; Cui, CUI ; Wei-Xing, PU ; Nan, HUO ; Jun-Bo, ZHAO
International Eye Science 2017;17(6):1047-1050
AIM: To analyze the effect of pigment epithelium derived factor (PEDF) on nitrogen monoxide (NO) and expression of cysteine-containing, aspartate-specific proteases-3 (caspase-3) in retinal tissues of model rats with optic nerve crush injury.METHODS: A total of 60 SD rats were randomly divided into the blank control group, model group and PEDF group, with 20 rats in each group.Except the blank control group, the optic nerve crush injury rat models were established in the other groups, and left eyeballs were taken as samples.After successfully modeling, the model group were treated with intravitreal injection of 5μL of balanced salt solution while PEDF group were treated with intravitreal injection of 5μL of PEDF (0.2μg/μL).Two weeks later, the retinal tissues were collected, and changes of shape were observed under microscope after HE staining.The changes of NO level were measured by colorimetry assay, the expression of caspase-3 mRNA and caspase-3 protein was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western-blot.RESULTS: HE staining showed that retinal tissues of the blank control group arranged neatly and clearly.Retinal ganglion cells (RGCs) arranged in a monolayer, and cells were oval, uniform in size and distribution, the cell nuclei were clear, closely arranged, with clear boundaries.The retinal tissues of the model group were sparse in shape, RGCs showed vacuolar changes, the overall number of cells was reduced, and cell nuclei of residual RGCs showed pyknosis and uneven staining.RGCs in PEDF group were with slightly edema and arranged closely, and the degree of injury was significantly milder than that in the model group.Levels of Caspase-3 mRNA and protein and NO levels in the three groups showed the model group > PEDF group > blank control group (all P < 0.05).CONCLUSION: The application of PEDF can down regulate the expression of Caspase-3 and NO in rates with optic nerve injury and reduce RGCs injury.
3.Expressions of P-JNK in nerve cell apoptosis of A2AR knockout newborn mice after hypoxia/ischemia brain damage.
Hai-Ling FAN ; Shui-Gui YIN ; Pu LOU ; Su-Wei REN ; Sheng HUANG ; Xiang CHEN
Chinese Journal of Applied Physiology 2013;29(2):187-192
OBJECTIVETo investigate the effect of adenosine A2A receptor knockout (A(2A)RKO) on relationship between continuous activation of phospho-c-Jun N-terminal kinase (P-JNK) and expression of nerve cell apoptosis in hippocampus CA1 domain of newborn mice after hypoxia/ischemia brain damage(HIBD) and its potential mechanism.
METHODSA(2A)RKO mice and adenosine A2A receptor wildtype (A(2A)RWT) littermates (n = 80) were divided into Sham operation group (S) and model group (M), 1, 3 and 7 day after HIBD, totally 8 groups. HIBD was developed with 7 day-old neonatal mice according classical Rice-Vannucci method. It was tested the effect of A(2A)RKO on short-term neurofunctional outcomes consisted of three developmental reflexes (righting, geotaxis and cliff aversion), the changes of brain pathology with hematoxylin-eosin (HE) staining and Nissl staining, the expressions of nerve cell apoptosis with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling(TUNEL) staining and P-JNK were observed by immunohistochemistry.
RESULTSThe neurological behavior injuries and brain histopathological damages and nerve apoptosis cells were aggravated in A(2A)RKO newborn mice after HIBD. The positive expressions of P-JNK were significantly higher in the ischemic hippocampus CA1 domain after HIBD than ones in group S respectively (P < 0.01), reaching to peak at 1 day and then began gradually decreasing. P-JNK expression in model knockout(MKO) at 1, 3 and 7 day increased greatly compared to those in the previous time point of corresponding model wildtype (MWT) (P < 0.01, P < 0.05, P > 0.05); there was a positive correlation between the expressions of P-JNK and nerve cell apoptosis after HIBD in newborn mice(r = 0.837, P < 0.01).
CONCLUSIONEarly continuous activation of P-JNK might be involved in the aggravated nerve apoptosis cells and brain damage induced by A(2A) RKO newborn mice after HIBD.
Animals ; Animals, Newborn ; Apoptosis ; Hypoxia-Ischemia, Brain ; metabolism ; pathology ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Mice ; Mice, Knockout ; Neurons ; drug effects ; metabolism ; pathology ; Receptor, Adenosine A2A ; genetics
4.Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse microcystis aeruginosa.
Fei YANG ; Hai Yan WEI ; Xiao Qin LI ; Yun Hui LI ; Xiao Bo LI ; Li Hong YIN ; Yue Pu PU
Biomedical and Environmental Sciences 2013;26(2):148-154
OBJECTIVETo isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905.
METHODSThe bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy.
RESULTSThe algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N3O), which showed strong lytic activity with algal strains M. aeruginosa TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (IC50) of prodigiosin with the algal strains was 4.8 (± 0.4)× 10⁻² μg/mL, 8.9 (± 1.1)× 10⁻² μg/mL, and 1.7 (± 0.1)× 10⁻¹ μg/mL in 24 h, respectively.
CONCLUSIONThe bacterium LTH-2 and its pigment had strong Microcystis-lysing activity probably related to damage of cell membranes. The bacterium LTH-2 and its red pigment are potentially useful for regulating blooms of harmful M. aeruginosa.
Anti-Bacterial Agents ; pharmacology ; Bacteria ; classification ; genetics ; metabolism ; Lakes ; Microcystis ; growth & development ; Phylogeny
5.Common anti-inflammatory effects of heat-clearing and toxin-removing Chinese medicines on diverse cardiovascular diseases.
Dong WANG ; Xue YU ; Kai HUANG ; Jia-Yang TANG ; Xiao-Qi WEI ; Hai-Yin PU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2022;47(20):5418-5423
Cardiovascular diseases seriously affect human health and their prevalence continues to increase with the aging of the population. The integrated therapy of traditional Chinese medicine(TCM) and western medicine for cardiovascular diseases has achieved certain results, but it is still faced with new challenges. Studies have shown that inflammation plays an important role in the development of cardiovascular diseases and some of these mechanisms have common features. For example, in cardiovascular diseases, C-C motif chemokine receptor 2(CCR2)-expressing macrophages increase and promote inflammation, and excessive activation of NOD-like receptor protein 3(NLRP3) inflammasome leads to the elevation of inflammatory factors. There is also new understanding of the pathogenesis and treatment of cardiovascular diseases in TCM. The heat-toxicity theory in cardiovascular diseases and the therapeutic principle of clearing heat and removing toxin have attracted attention. The clinical and pharmacological studies on the treatment of cardiovascular diseases such as Huanglian Jiedu Decoction and Simiao Yong'an Decoction are also gradually increasing. The present study analyzed the common features of the inflammatory response mechanisms in diverse cardiovascular diseases and discussed the significance of the prevention and treatment of diverse cardiovascular diseases by the treatment method of clearing heat and removing toxin to regulate inflammation, which is expected to provide new ideas and references for clinical treatment and drug research on cardiovascular diseases with the same treatment method for different diseases.
Humans
;
Cardiovascular Diseases/drug therapy*
;
Hot Temperature
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Inflammation/drug therapy*
;
China
;
Anti-Inflammatory Agents/therapeutic use*
6.Role of macrophages in heart failure and traditional Chinese medicine intervention.
Kai HUANG ; Dong WANG ; Xue YU ; Jia-Yang TANG ; Jiang YU ; Xiao-Qi WEI ; Hai-Yin PU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(9):2379-2386
As the disease with high morbidity and mortality in the world, heart failure affects the development of human society. Due to its complicated pathology and limited treatment options, it is urgent to discover new disease targets and develop new treatment strategies. As innate immune cells accompanied by the evolution of heart failure, macrophages play an important role in cardiac homeostasis and stress. In recent years, the role of macrophages in the heart has attracted more and more attention as a potential target for heart failure intervention, and the research on cardiac macrophages has made important progress. Traditional Chinese medicine(TCM) has significant effects on regulating inflammatory response, treating heart failure, and maintaining homeostasis. In this article, researches on the functions of cardiac macrophages and application of TCM were reviewed from the source and classification of cardiac macrophages and the relationship of macrophages and cardiac inflammation, myocardial fibrosis, cardiac angiogenesis, and cardiac electrical conduction, which provided a basis for further basic research and clinical applications.
Humans
;
Medicine, Chinese Traditional
;
Heart Failure/drug therapy*
;
Macrophages
;
Drugs, Chinese Herbal/therapeutic use*
7.Effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction.
Xin-Yi FAN ; Xiao-Qi WEI ; Yun-Yang ZHANG ; Hai-Yin PU ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(21):5838-5850
Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-β1(TGF-β1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), β-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-β1, α-SMA, Wnt3a, and β-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.
Mice
;
Animals
;
Transforming Growth Factor beta1/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
beta Catenin/metabolism*
;
Matrix Metalloproteinase 3/therapeutic use*
;
Powders
;
Ventricular Remodeling
;
Stroke Volume
;
Ventricular Function, Left
;
Myocardial Infarction/drug therapy*
;
Myocardium/pathology*
;
Heart Failure/metabolism*
;
Collagen/metabolism*
;
Creatine Kinase
;
Fibrosis
8.Mechanism of Jiming Powder in ameliorating heart failure with preserved ejection fraction based on metabolomics.
Xiao-Qi WEI ; Xin-Yi FAN ; Hai-Yin PU ; Shuai LI ; Jia-Yang TANG ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(17):4747-4760
In this study, untargeted metabolomics was conducted using the liquid chromatography-tandem mass spectrometry(LC-MS/MS) technique to analyze the potential biomarkers in the plasma of mice with heart failure with preserved ejection fraction(HFpEF) induced by a high-fat diet(HFD) and nitric oxide synthase inhibitor(Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) and explore the pharmacological effects and mechanism of Jiming Powder in improving HFpEF. Male C57BL/6N mice aged eight weeks were randomly assigned to a control group, a model group, an empagliflozin(10 mg·kg~(-1)·d~(-1)) group, and high-and low-dose Jiming Powder(14.3 and 7.15 g·kg~(-1)·d~(-1)) groups. Mice in the control group were fed on a low-fat diet, and mice in the model group and groups with drug intervention were fed on a high-fat diet. All mice had free access to water, with water in the model group and Jiming Powder groups being supplemented with L-NAME(0.5 g·L~(-1)). Drugs were administered on the first day of modeling, and 15 weeks later, blood pressure and cardiac function of the mice in each group were measured. Heart tissues were collected for hematoxylin-eosin(HE) staining to observe pathological changes and Masson's staining to observe myocardial collagen deposition. Untargeted metabolomics analysis was performed on the plasma collected from mice in each group, and metabolic pathway analysis was conducted using MetaboAnalyst 5.0. The results showed that the blood pressure was significantly lower and the myocardial concentric hypertrophy and left ventricular diastolic dysfunction were significantly improved in both the high-dose and low-dose Jiming Powder groups as compared with those in the model group. HE and Masson staining showed that both high-dose and low-dose Jiming Powder significantly alleviated myocardial fibrosis. In the metabolomics experiment, 23 potential biomarkers were identified and eight strongly correlated metabolic pathways were enriched, including linoleic acid metabolism, histidine metabolism, alpha-linolenic acid metabolism, glycerophospholipid metabolism, purine metabolism, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and pyrimidine metabolism. The study confirmed the pharmacological effects of Jiming Powder in lowering blood pressure and ameliorating HFpEF and revealed the mechanism of Jiming Powder using the metabolomics technique, providing experimental evidence for the clinical application of Jiming Powder in treating HFpEF and a new perspective for advancing and developing TCM therapy for HFpEF.
Male
;
Mice
;
Animals
;
Heart Failure/metabolism*
;
Powders
;
Stroke Volume/physiology*
;
Chromatography, Liquid
;
NG-Nitroarginine Methyl Ester/therapeutic use*
;
Mice, Inbred C57BL
;
Tandem Mass Spectrometry
;
Metabolomics
;
Biomarkers
;
Water
9.Association of Overlapped and Un-overlapped Comorbidities with COVID-19 Severity and Treatment Outcomes: A Retrospective Cohort Study from Nine Provinces in China.
Yan MA ; Dong Shan ZHU ; Ren Bo CHEN ; Nan Nan SHI ; Si Hong LIU ; Yi Pin FAN ; Gui Hui WU ; Pu Ye YANG ; Jiang Feng BAI ; Hong CHEN ; Li Ying CHEN ; Qiao FENG ; Tuan Mao GUO ; Yong HOU ; Gui Fen HU ; Xiao Mei HU ; Yun Hong HU ; Jin HUANG ; Qiu Hua HUANG ; Shao Zhen HUANG ; Liang JI ; Hai Hao JIN ; Xiao LEI ; Chun Yan LI ; Min Qing LI ; Qun Tang LI ; Xian Yong LI ; Hong De LIU ; Jin Ping LIU ; Zhang LIU ; Yu Ting MA ; Ya MAO ; Liu Fen MO ; Hui NA ; Jing Wei WANG ; Fang Li SONG ; Sheng SUN ; Dong Ting WANG ; Ming Xuan WANG ; Xiao Yan WANG ; Yin Zhen WANG ; Yu Dong WANG ; Wei WU ; Lan Ping WU ; Yan Hua XIAO ; Hai Jun XIE ; Hong Ming XU ; Shou Fang XU ; Rui Xia XUE ; Chun YANG ; Kai Jun YANG ; Sheng Li YUAN ; Gong Qi ZHANG ; Jin Bo ZHANG ; Lin Song ZHANG ; Shu Sen ZHAO ; Wan Ying ZHAO ; Kai ZHENG ; Ying Chun ZHOU ; Jun Teng ZHU ; Tian Qing ZHU ; Hua Min ZHANG ; Yan Ping WANG ; Yong Yan WANG
Biomedical and Environmental Sciences 2020;33(12):893-905
Objective:
Several COVID-19 patients have overlapping comorbidities. The independent role of each component contributing to the risk of COVID-19 is unknown, and how some non-cardiometabolic comorbidities affect the risk of COVID-19 remains unclear.
Methods:
A retrospective follow-up design was adopted. A total of 1,160 laboratory-confirmed patients were enrolled from nine provinces in China. Data on comorbidities were obtained from the patients' medical records. Multivariable logistic regression models were used to estimate the odds ratio (
Results:
Overall, 158 (13.6%) patients were diagnosed with severe illness and 32 (2.7%) had unfavorable outcomes. Hypertension (2.87, 1.30-6.32), type 2 diabetes (T2DM) (3.57, 2.32-5.49), cardiovascular disease (CVD) (3.78, 1.81-7.89), fatty liver disease (7.53, 1.96-28.96), hyperlipidemia (2.15, 1.26-3.67), other lung diseases (6.00, 3.01-11.96), and electrolyte imbalance (10.40, 3.00-26.10) were independently linked to increased odds of being severely ill. T2DM (6.07, 2.89-12.75), CVD (8.47, 6.03-11.89), and electrolyte imbalance (19.44, 11.47-32.96) were also strong predictors of unfavorable outcomes. Women with comorbidities were more likely to have severe disease on admission (5.46, 3.25-9.19), while men with comorbidities were more likely to have unfavorable treatment outcomes (6.58, 1.46-29.64) within two weeks.
Conclusion
Besides hypertension, diabetes, and CVD, fatty liver disease, hyperlipidemia, other lung diseases, and electrolyte imbalance were independent risk factors for COVID-19 severity and poor treatment outcome. Women with comorbidities were more likely to have severe disease, while men with comorbidities were more likely to have unfavorable treatment outcomes.
Adult
;
Aged
;
COVID-19/virology*
;
China/epidemiology*
;
Comorbidity
;
Female
;
Humans
;
Male
;
Middle Aged
;
Retrospective Studies
;
Severity of Illness Index
;
Treatment Outcome