1.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
2.Short-term effects of ambient ozone on pediatric pneumonia hospital admissions: a multi-city case-crossover study in China.
Huan WANG ; Huan-Ling ZENG ; Guo-Xing LI ; Shuang ZHOU ; Jin-Lang LYU ; Qin LI ; Guo-Shuang FENG ; Hai-Jun WANG
Environmental Health and Preventive Medicine 2025;30():75-75
BACKGROUND:
Children's respiratory health demonstrates particular sensitivity to air pollution. Existing evidence investigating the association between short-term ozone (O3) exposure and childhood pneumonia remains insufficient and inconsistent, especially in low- and middle-income countries (LMICs).
METHOD:
To provide more reliable and persuasive evidence, we implemented a multi-city, time-stratified case-crossover design with a large sample size, using data from seven representative children's hospitals across major geographical regions in China. To avoid the impact of the COVID-19 pandemic, individual-level medical records of inpatient children under 6 years of age diagnosed with pneumonia during 2016-2019 were collected. Conditional logistic regression models were fitted for each city, and city-specific estimates were pooled through a meta-analysis using a random-effects model.
RESULTS:
In total, the study included 137,470 pediatric pneumonia hospital admissions. The highest pooled estimate for O3 occurred at lag0-1, with a 10 µg/m3 increase in O3 associated with a 1.57% (95% CI: 0.67%-2.48%) higher risk of pediatric pneumonia hospital admissions. Stratified analyses indicated that the effects of O3 were robust across different sexes, age groups, and admission seasons. We also observed a statistically significant increase in risk associated with O3 concentrations exceeding the World Health Organization Air Quality Guidelines (WHO-AQGs).
CONCLUSIONS
This study revealed a significant positive association between O3 and pediatric pneumonia hospital admissions. Our findings substantially strengthen the evidence base for the adverse health impacts of O3, underscoring the importance of O3 pollution control and management in reducing the public health burden of pediatric pneumonia.
Humans
;
Ozone/analysis*
;
China/epidemiology*
;
Pneumonia/chemically induced*
;
Child, Preschool
;
Male
;
Female
;
Infant
;
Cross-Over Studies
;
Air Pollutants/analysis*
;
Hospitalization/statistics & numerical data*
;
Child
;
Cities/epidemiology*
;
Air Pollution/adverse effects*
;
Infant, Newborn
;
Environmental Exposure/adverse effects*
3.Effect of hand hygiene intervention on healthcare-associated case infection incidence from 2014 to 2022
Jia-Yan DING ; Rui-Hong SHEN ; Wen-Qin ZHOU ; Ya-Yun YUAN ; Mei HUANG ; Ya YANG ; Bing-Chao CAI ; Hai-Qun BAN ; Xiao-Fang FU
Chinese Journal of Infection Control 2024;23(2):208-213
Objective To observe the effect of multi-modal hand hygiene(HH)intervention on HH compliance,as well as the relationship between HH compliance and the healthcare-associated(HA)case infection incidence.Methods From 2014 to 2022,the infection control team in a tertiary first-class hospital implemented multi-modal HH intervention for health care workers(HCWs).The changing trend of HH monitoring data,the correlation be-tween HH compliance rate and HA case infection incidence were analyzed retrospectively.Results The consump-tion of HH products in the wards showed a stable upward trend;HH compliance rate increased from 64.98%in 2014 to 85.01%in 2022(P<0.001),and HA case infection incidence decreased from 1.21%to 0.83%(P<0.05).HH compliance rate was negatively correlated with HA case infection incidence(r=-0.369,P=0.027).HH compliance rates in different regions and job posts in each quarter were increased(P<0.001).For 5 different HH moments in each quarter,HH compliance rate fluctuated slightly before sterile manipulation and after touching patient;presented rising trend after touching surroundings around patient,and decreased before touching patient and after touching patient's body fluid since 2020(P<0.001).Conclusion Multi-modal HH intervention can im-prove the HH compliance of HCWs,improving their HH awareness is conducive to reducing HA case infection incidence.
4.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
5.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
6.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
7.Effect of Simo decoction on the regulation of NLRP3/Caspase-1/GSDMD signal pathway on duodenal microinflammation in rats with functional dyspepsia
Qin LIU ; Xiao-Yuan LIN ; Ling-Feng YANG ; Qian LUO ; Yun-Zong HAN ; Si-Qing CHEN ; Hai-Yue ZHANG ; Shu ZHOU ; Sai-Nan ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(1):67-71
Objective To investigate the effects of Simo decoction on duodenal microinflammation and NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate-specific proteinase-1(Caspase-1)/gasdermin D(GSDMD)signaling pathway in rats with functional dyspepsia(FD).Methods The FD model was established by multifactorial method.SD rats were randomly divided into normal group,model group(FD model),positive control group(gavage administration of 0.305 mg·kg-1 mosapride injection)and experimental-H,-M,-L groups(gavage administration of 5.62,2.81,1.40 g·kg-1 Simo decoction).Small intestinal advancement rate and gastric emptying rate was determined;the levels of interleukin(IL)-1 β and IL-18 in serum were determined by enzyme linked immunosorbent assay(ELISA);the protein expression of NLRP3 and GSDMD in duodenal tissue was detected by Western blotting.Results The gastric emptying rates of normal,model,positive control and experimental-H,-M,-Lgroupswere(58.34±5.72)%,(29.16±8.37)%,(48.77±6.10)%,(48.35±6.04)%,(48.20±3.49)%and(39.24±4.20)%;the small intestinal propulsion rates were(82.01±7.55)%,(41.95±9.53)%,(64.61±10.18)%,(75.04±9.76)%,(60.58±7.13)%and(45.89±7.40)%;serum IL-1 β expression were(12.86±0.88),(43.73±4.60),(18.84±0.86),(24.61±1.57),(19.14±0.77)and(29.04±0.72)pg·mL-1;IL-18 expressions were(95.00±3.74),(170.60±8.78),(108.50±3.05),(118.90±3.45),(99.90±8.70)and(141.00±3.71)pg·mL-1;the relative expression levels of NLRP3 proteins were 0.32±0.02,0.84±0.05,0.42±0.03,0.48±0.02,0.61±0.04 and 0.62±0.05;the relative expression levels of GSDMD proteins were 0.34±0.05,0.93±0.06,0.35±0.03,0.52±0.02,0.53±0.06 and 0.55±0.05,respectively.Compared with the normal group,the above indexes in the model group have statistical significance;compared with the model group,the above indexes in the experimental-H group and the positive control group also have statistical significance(P<0.01 or P<0.05).Conclusion Simo decoction can effectively improve the general condition and duodenal microinflammation in FD rats,and the mechanism may be related to the inhibition of duodenal NLRP3/Caspase-1/GSDMD signaling pathway.
8.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
9.Advances in roles of Parabacteroides distasonis and its regulation by traditional Chinese medicines.
Dan LONG ; Meng QIN ; Pei-Peng CHEN ; Xin HUANG ; Ya-Ting CAO ; Ai-Ling YIN ; Yue-Yue CHEN ; Hai-Dan WANG ; Yun-Ke GUO ; Xuan WANG ; Hai-Jian SUN ; Jin-Jun SHAN ; Wei ZHOU
China Journal of Chinese Materia Medica 2024;49(22):5988-5997
Parabacteroides distasonis is a gram-negative bacterium initially isolated from a clinical specimen in the 1930s. The strain was re-classified to form the new genus Parabacteroides in 2006. P. distasonis can regulate intestinal barrier function and plays a key role in immune response and metabolic regulation of bodies. Traditional Chinese medicine(TCM) is closely related to the intestinal microbiota. Polysaccharides, saponins, and other ingredients of TCM can treat diseases by interacting with P. distasonis, but the specific mechanisms underlying these processes are still unclear, requiring further exploration. This study reviewed the roles and related mechanisms of P. distasonis in inflammatory-immune diseases, metabolic diseases, cardiovascular disease, neuropsychiatric diseases, cancer, and other diseases and summarized the relevant research results of TCM to prevent and treat diseases by regulating P. distasonis. This study provides a reference for subsequent exploration of P. distasonis and research on the interaction between TCM and intestinal microbiota.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Medicine, Chinese Traditional
;
Animals
;
Bacteroidetes
;
Drugs, Chinese Herbal/pharmacology*
10.Research progresses of endogenous vascular calcification inhibitor BMP-7
Xin ZHOU ; Lu XING ; Peng-Quan LI ; Dong ZHAO ; Hai-Qing CHU ; Chun-Xia HE ; Wei QIN ; Hui-Jin LI ; Jia FU ; Ye ZHANG ; Li XIAO ; Hui-Ling CAO
Chinese Pharmacological Bulletin 2024;40(7):1226-1230
Vascular calcification is a highly regulated process of ectopic calcification in cardiovascular system while no effective intervention can be clinically performed up to date.As vascular calcification undergoes a common regulatory mechanism within bone formation,bone morphogenetic protein 7(BMP-7)main-tains contractile phenotype of vascular smooth muscle cells and further inhibits vascular calcification via promoting the process of osteoblast differentiation,reducing ectopic calcification pressure by increasing bone formation and reducing bone resorption.This work systematically reviews the role of BMP-7 in vascular calcifi-cation and the possible mechanism,and their current clinical application as well.The current proceedings may help develope early diagnostic strategy and therapeutic treatment with BMP-7 as a new molecular marker and potential drug target.The expec-tation could achieve early prevention and intervention of vascular calcification and improve poor prognosis on patients.

Result Analysis
Print
Save
E-mail