1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.Research Progress of Dual-Specificity Phosphatase in Diabetic Nephropathy
Xiaonian WANG ; Qi AO ; Hai HUANG ; Caihua LIE
Medical Journal of Peking Union Medical College Hospital 2025;16(3):730-738
Diabetic nephropathy(DN), a prevalent microvascular complication of diabetes, has emerged as a leading cause of end-stage renal disease worldwide. Recent studies on the dual-specific phosphatase (DUSP) family have revealed a significant reduction in DUSP expression levels in renal disease, suggesting that enhancing its expression may mitigate or alleviate the symptoms associated with renal disease. The primary function of DUSP is to mediate the dephosphorylation of mitogen-activated protein kinase (MAPK), which effectively inhibits the activation of the MAPK pathway, thus playing a crucial regulatory role in the onset and progression of DN. This article aims to investigate the correlation between DN and DUSP and to summarize the current research advancements concerning DUSP in the context of DN, providing new insights and essential theoretical foundations for its diagnosis and treatment.
3.The pleiotropic role of MEF2C in bone tissue development and metabolism.
Hao-Jie XIAO ; Rui-Qi HUANG ; Sheng-Jie LIN ; Jin-Yang LI ; Xue-Jie YI ; Hai-Ning GAO
Acta Physiologica Sinica 2025;77(2):374-384
The development of bone in human body and the maintenance of bone mass in adulthood are regulated by a variety of biological factors. Myocyte enhancer factor 2C (MEF2C), as one of the many factors regulating bone tissue development and balance, has been shown to play a key role in bone development and metabolism. However, there is limited systematic analysis on the effects of MEF2C on bone tissue. This article reviews the role of MEF2C in bone development and metabolism. During bone development, MEF2C promotes the development of neural crest cells (NC) into craniofacial cartilage and directly promotes cartilage hypertrophy. In terms of bone metabolism, MEF2C exhibits a differentiated regulatory model across different types of osteocytes, demonstrating both promoting and other potential regulatory effects on bone formation, with its stimulating effect on osteoclasts being determined. In view of the complex roles of MEF2C in bone tissue, this paper also discusses its effects on some bone diseases, providing valuable insights for the physiological study of bone tissue and strategies for the prevention of bone diseases.
Humans
;
MEF2 Transcription Factors/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Bone Development/physiology*
;
Osteogenesis/physiology*
;
Myogenic Regulatory Factors/physiology*
4.Research progress on mechanism of traditional Chinese medicine in regulating neutrophil extracellular traps in prevention and treatment of metabolic diseases.
Sai ZHANG ; Ming-Yuan FAN ; Jiu-Shu YUAN ; Qi-Yuan YAO ; Hong-Yan XIE ; Hai-Po YUAN ; Hong GAO
China Journal of Chinese Materia Medica 2025;50(1):78-93
Metabolic diseases have seen a steady increase in incidence in recent years, becoming one of the main causes of sub-health status globally. Neutrophil extracellular traps(NETs) are reticular complexes containing DNA, which trap foreign microorganisms or induce an immune response. Current research indicates that NETs are widely active in various metabolic diseases and can cause severe damage to the body through multiple mechanisms, including promoting blood glucose elevation, damaging vascular endothelial cells, forming vascular embolisms, triggering intense inflammation, and promoting lipid accumulation. Therefore, intervening in NETs is an important approach to treating metabolic diseases. Research has shown a close relationship between the theory of spleen heat-turbid toxin theory and metabolic diseases-NETs mechanism. The basic pathogenesis include the internal accumulation of phlegm-dampness, qi stagnation and blood stasis, internal accumulation of dampness-heat, phlegm and blood stasis, and flourishing toxic heat. Various Chinese herbal medicines with the functions of dispelling dampness, resolving phlegm, promoting blood circulation to remove blood stasis, and clearing heat and toxins, along with their extracts and compound prescriptions, can treat metabolic diseases by regulating NETs and delaying disease progression. This paper systematically outlined the formation mechanisms of NETs, their connection to metabolic diseases, the theoretical basis in TCM, their roles in numerous metabolic diseases, and the current research status of TCM in regulating NETs to prevent and control metabolic diseases, aiming to provide effective reference ideas for developing therapeutic strategies for metabolic diseases.
Humans
;
Extracellular Traps/metabolism*
;
Metabolic Diseases/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Neutrophils/metabolism*
;
Medicine, Chinese Traditional
5.Fourth national survey of traditional Chinese medicine resources and protection of traditional knowledge of medication use among ethnic minorities.
Jiang-Wei DU ; Xiao-Bo ZHANG ; Jian-Zhi CUI ; Shao-Hua YANG ; Hai-Tao LI ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(9):2349-2355
Traditional Chinese medicine(TCM) resources are the essential material foundation for the development of TCM. The national survey of TCM resources serves as a periodic summary of these resources, ensuring the continuity, prosperity, and development of TCM in China. Since 1949, four national surveys of TCM resources have been conducted. The fourth survey incorporated an investigation into traditional knowledge related to TCM resources, including the traditional medicinal knowledge of Chinese ethnic minorities, with the goal of systematically exploring, preserving, and inheriting this knowledge. This manuscript provides an overview of the basic findings from the first three national surveys of TCM resources, while also clarifying the concepts, categories, forms, carriers, and acquisition pathways of traditional knowledge related to TCM resources. A preliminary summary of the findings from traditional knowledge investigations reported in current literature is also presented. Based on the fourth survey, this manuscript emphasizes the urgency of developing public medical knowledge through empirically-based investigations, the excavation, and compilation of traditional knowledge. It also outlines the potential for conducting "precise" investigations based on first-hand data obtained from the survey, as well as facilitating the discovery and evaluation of new medicines using traditional knowledge related to ethnic minority medicinal practices. This manuscript is expected to provide valuable insights for promoting the health and industrial development of ethnic minority populations in the post-"survey" phase.
Humans
;
Medicine, Chinese Traditional
;
China/ethnology*
;
Minority Groups
;
Ethnicity
;
Drugs, Chinese Herbal/therapeutic use*
;
Health Knowledge, Attitudes, Practice/ethnology*
;
Surveys and Questionnaires
6.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
7.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
8.Risk factors for recurrent plastic bronchitis in children with Mycoplasma pneumoniae pneumonia.
Wan-Yi LI ; Shu-Ying WANG ; Hai-Zhen WANG ; Qi-Jun ZHAO ; Tao ZHANG ; Wen-Yuan WANG ; Yuan HUO ; Yong-Jun WANG
Chinese Journal of Contemporary Pediatrics 2025;27(10):1220-1226
OBJECTIVES:
To identify risk factors for recurrent plastic bronchitis (PB) among children with Mycoplasma pneumoniae pneumonia (MPP).
METHODS:
The clinical data of children with MPP complicated by PB who underwent bronchoscopy at Gansu Province Maternity and Child Health Hospital between July 2023 and January 2025 were retrospectively analyzed. Patients were grouped into a single-episode PB group and a recurrent PB group according to the number of PB episodes. Multivariable logistic regression was used to identify risk factors for recurrent PB. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of individual and combined predictors.
RESULTS:
A total of 264 children were included; 188 (71.2%) had a single episode of PB and 76 (28.8%) had recurrent PB. Multivariable logistic regression analysis showed that decreased serum albumin, atelectasis, and fever persisting beyond 72 hours after the initial bronchoscopy were significantly associated with recurrent PB (all P<0.05). The combination of these predictors yielded a sensitivity of 82.9%, specificity of 61.7%, and an area under the ROC curve of 0.777 (95%CI: 0.714-0.839), outperforming any single predictor (P<0.05).
CONCLUSIONS
In children with MPP complicated by PB, decreased serum albumin, the presence of atelectasis, and fever persisting beyond 72 hours after the initial bronchoscopy are associated with an increased risk of PB recurrence. In such cases, early repeat or multiple bronchoscopic interventions should be considered.
Humans
;
Pneumonia, Mycoplasma/complications*
;
Male
;
Female
;
Risk Factors
;
Recurrence
;
Child, Preschool
;
Bronchitis/etiology*
;
Child
;
Retrospective Studies
;
Logistic Models
;
Infant
;
ROC Curve
;
Adolescent
9.Prognostic Significance of Monocyte Count in Patients with Non-Severe Aplastic Anemia.
Xue-Dong SHI ; Li HAN ; Shu-Qi WANG ; Qiu-Shuang WANG ; Zhen-Yu LI ; Kai-Lin XU ; Hai CHENG
Journal of Experimental Hematology 2025;33(4):1120-1126
OBJECTIVE:
To investigate the prognostic value of peripheral blood absolute monocyte count(AMC) in non-severe aplastic anaemia(NSAA) patients.
METHODS:
178 patients with NSAA who attended the Affiliated Hospital of Xuzhou Medical University from April 2008 to September 2020 were retrospectively analyzed, and the optimal cut-off value of peripheral blood AMC was determined by the receiver operating characteristic curve of the subjects, and they were divided into low AMC group (48 patients) and normal AMC group (130 patients), and the differences in clinical characteristics between the two groups were compared. Overall survival(OS) and progression-free survival(PFS) were analyzed by Kaplan-Meier. Univariate and multivariate Cox regression analysis were used to determine the independent prognostic value of AMC.
RESULTS:
Among 178 NSAA patients, 105(59.0%) were male and 73(41.0%) were female, with a median age of 31(18-87) years old, a median follow-up time of 58 months (range: 6 months-175 months), and a median AMC of 0.15×109/L [range: (0.01-0.59)×109/L)]. The proportion of granulocytes (27.5% vs 36.0%, P < 0.05), and the proportion of mature monocytes (1% vs 2%, P < 0.05) in the low AMC group were lower than that in the normal AMC group; the proportion of mature lymphocytes in the low AMC group was higher than that in the normal AMC group (54% vs 50%, P < 0.05). However, there was no significantly different in the proportion of erythropoietic cells and stages of the erythropoietic cells between the two groups ( P >0.05). CR (27.7% vs 10.4%) and ORR (75.4% vs 56.3%) in the normal AMC group were higher than that in the low AMC group. Compared with patients in the low AMC group, AA patients in the normal AMC had better 5-year OS (98.5% vs 86.9%, P < 0.01), and the 5-year PFS (86.0% vs 58.9%, P < 0.01). Also, the 10-year survival rate of patients in the normal AMC group was higher than that in the low AMC group (98.5% vs 60.5%,P < 0.01). Univariate analysis showed that age, reticulocyte count, AMC<0.1×109/L and the proportion of bone marrow mature monocytes were related with patients survival. Multivariate Cox regression analysis showed that monocyte count reduction was not an independent poor prognostic factor in NSAA patients (HR =4.474,95%CI :0.508-44.390; P =0.172).
CONCLUSION
Low AMC level at initial diagnosis is not an independent prognostic factor for NSAA patients, but still suggest potential prognostic value of AMC.
Humans
;
Anemia, Aplastic/diagnosis*
;
Female
;
Male
;
Prognosis
;
Monocytes
;
Adult
;
Middle Aged
;
Retrospective Studies
;
Adolescent
;
Aged
;
Young Adult
;
Aged, 80 and over
;
Leukocyte Count
10.Analysis of Hormone Levels in Patients with Hematological Diseases Before and After Hematopoietic Stem Cell Tansplantation.
Fen LI ; Yu-Jin LI ; Jie ZHAO ; Zhi-Xiang LU ; Xiao-Li GAO ; Hai-Tao HE ; Xue-Zhong GU ; Feng-Yu CHEN ; Hui-Yuan LI ; Qi SA ; Lin ZHANG ; Peng HU
Journal of Experimental Hematology 2025;33(5):1443-1452
OBJECTIVE:
By analyzing the hormone secretion of the adenohypophysis, thyroid glands, gonads, and adrenal cortex in patients with hematological diseases before and after hematopoietic stem cell transplantation (HSCT), this study aims to preliminarily explore the effect of HSCT on patients' hormone secretion and glandular damage.
METHODS:
The baseline data of 209 hematological disease patients who underwent HSCT in our hospital from January 2019 to December 2023, as well as the data on the levels of hormones secreted by the adenohypophysis, thyroid glands, gonads and adrenal cortex before and after HSCT were collected, and the changes in hormone levels before and after transplantation were analyzed.
RESULTS:
After allogeneic HSCT, the levels of thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3) and estradiol (E2) decreased, while the levels of luteinizing hormone (LH) and follicle- stimulating hormone (FSH) increased. The T3 level of patients with decreased TSH after transplantation was lower than that of those with increased TSH after transplantation. In female patients, the levels of prolactin (PRL), progesterone (Prog), and testosterone (Testo) decreased after HSCT. Testo and PRL decreased when there was a donor-recipient sex mismatch, and the levels of adrenocorticotropic hormone (ACTH) and cortisol (COR) decreased when the HLA matching was haploidentical. The levels of T3, FT3, and PRL decreased after autologous HSCT. In allogeneic HSCT patients, the levels of TSH, T4, T3, FT3, and ACTH in the group with graft-versus-host disease (GVHD) were significantly lower than those in the group without GVHD. Logistic regression analysis showed the changes in hormone levels after transplantation were not correlated with factors such as the patient's sex, age, or whether the blood types of the donor and the recipient are the same.
CONCLUSION
HSCT can affect the endocrine function of patients with hematological diseases, mainly affecting target glandular organs such as the thyroid, gonads, and adrenal glands, while the secretory function of the adenohypophysis is less affected.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Hematologic Diseases/blood*
;
Follicle Stimulating Hormone/blood*
;
Triiodothyronine/blood*
;
Luteinizing Hormone/blood*
;
Thyroid Gland/metabolism*
;
Estradiol/blood*
;
Thyrotropin/blood*
;
Gonads/metabolism*
;
Adult
;
Middle Aged
;
Adrenocorticotropic Hormone/blood*
;
Hormones/metabolism*
;
Adrenal Cortex/metabolism*
;
Prolactin

Result Analysis
Print
Save
E-mail