1.Squatting Posture Grading System for Screening of Limited Ankle Dorsiflexion
Ji Young KIM ; Oh Kyung LIM ; Ki Deok PARK ; Haeun NA ; Ju Kang LEE
Annals of Rehabilitation Medicine 2025;49(2):61-71
Objective:
To evaluate the effectiveness of a squatting posture grading system established to screen for limited ankle dorsiflexion.
Methods:
The squat posture grading system categorizes subjects’ squat posture into three grades. Grade 1 is defined as being able to maintain a squatting posture with heels on the ground in full ankle dorsiflexion without effort. Grade 2 is defined as being able to perform the same position, but unable to maintain the position for more than 5 seconds or requiring trunk and leg muscle efforts to maintain the position. Grade 3 is defined as being unable to maintain the same position and falling backwards immediately if attempted to touch the ground with heels. Next, subjects’ ankle dorsiflexion angles were directly measured in knee flexed and extended position by goniometer.
Results:
Out of the 92 total subjects, 35 were in grade 1, 18 were in grade 2, and 39 were in grade 3. The average ankle dorsiflexion angle with knee flexed position were 23.13° for grade 1, 16.03° for grade 2, and 9.31° for grade 3. The average ankle dorsiflexion angle with knee extended position were 15.16° for grade 1, 7.92° for grade 2, and 3.40° for grade 3. Ankle dorsiflexion angles showed a significant decrease from grade 1 to 3 (p<0.05).
Conclusion
The squatting posture grading system defined in this study effectively graded the subjects based on the difference in their average ankle dorsiflexion angle. This system could be used as a quick screening method for limited ankle dorsiflexion.
2.Squatting Posture Grading System for Screening of Limited Ankle Dorsiflexion
Ji Young KIM ; Oh Kyung LIM ; Ki Deok PARK ; Haeun NA ; Ju Kang LEE
Annals of Rehabilitation Medicine 2025;49(2):61-71
Objective:
To evaluate the effectiveness of a squatting posture grading system established to screen for limited ankle dorsiflexion.
Methods:
The squat posture grading system categorizes subjects’ squat posture into three grades. Grade 1 is defined as being able to maintain a squatting posture with heels on the ground in full ankle dorsiflexion without effort. Grade 2 is defined as being able to perform the same position, but unable to maintain the position for more than 5 seconds or requiring trunk and leg muscle efforts to maintain the position. Grade 3 is defined as being unable to maintain the same position and falling backwards immediately if attempted to touch the ground with heels. Next, subjects’ ankle dorsiflexion angles were directly measured in knee flexed and extended position by goniometer.
Results:
Out of the 92 total subjects, 35 were in grade 1, 18 were in grade 2, and 39 were in grade 3. The average ankle dorsiflexion angle with knee flexed position were 23.13° for grade 1, 16.03° for grade 2, and 9.31° for grade 3. The average ankle dorsiflexion angle with knee extended position were 15.16° for grade 1, 7.92° for grade 2, and 3.40° for grade 3. Ankle dorsiflexion angles showed a significant decrease from grade 1 to 3 (p<0.05).
Conclusion
The squatting posture grading system defined in this study effectively graded the subjects based on the difference in their average ankle dorsiflexion angle. This system could be used as a quick screening method for limited ankle dorsiflexion.
3.Squatting Posture Grading System for Screening of Limited Ankle Dorsiflexion
Ji Young KIM ; Oh Kyung LIM ; Ki Deok PARK ; Haeun NA ; Ju Kang LEE
Annals of Rehabilitation Medicine 2025;49(2):61-71
Objective:
To evaluate the effectiveness of a squatting posture grading system established to screen for limited ankle dorsiflexion.
Methods:
The squat posture grading system categorizes subjects’ squat posture into three grades. Grade 1 is defined as being able to maintain a squatting posture with heels on the ground in full ankle dorsiflexion without effort. Grade 2 is defined as being able to perform the same position, but unable to maintain the position for more than 5 seconds or requiring trunk and leg muscle efforts to maintain the position. Grade 3 is defined as being unable to maintain the same position and falling backwards immediately if attempted to touch the ground with heels. Next, subjects’ ankle dorsiflexion angles were directly measured in knee flexed and extended position by goniometer.
Results:
Out of the 92 total subjects, 35 were in grade 1, 18 were in grade 2, and 39 were in grade 3. The average ankle dorsiflexion angle with knee flexed position were 23.13° for grade 1, 16.03° for grade 2, and 9.31° for grade 3. The average ankle dorsiflexion angle with knee extended position were 15.16° for grade 1, 7.92° for grade 2, and 3.40° for grade 3. Ankle dorsiflexion angles showed a significant decrease from grade 1 to 3 (p<0.05).
Conclusion
The squatting posture grading system defined in this study effectively graded the subjects based on the difference in their average ankle dorsiflexion angle. This system could be used as a quick screening method for limited ankle dorsiflexion.
4.Validation of nutrient intake of smartphone application through comparison of photographs before and after meals
Hyejin LEE ; Eunbin KIM ; Su Hyeon KIM ; Haeun LIM ; Yeong Mi PARK ; Joon Ho KANG ; Heewon KIM ; Jinho KIM ; Woong-Yang PARK ; Seongjin PARK ; Jinki KIM ; Yoon Jung YANG
Journal of Nutrition and Health 2020;53(3):319-328
Purpose:
This study was conducted to evaluate the validity of the Gene-Health application in terms of estimating energy and macronutrients.
Methods:
The subjects were 98 health adults participating in a weight-control intervention study. They recorded their diets in the Gene-Health application, took photographs before and after every meal on the same day, and uploaded them to the Gene-Health application. The amounts of foods and drinks consumed were estimated based on the photographs by trained experts, and the nutrient intakes were calculated using the CAN-Pro 5.0 program, which was named ‘Photo Estimation’. The energy and macronutrients estimated from the Gene-Health application were compared with those from a Photo Estimation. The mean differences in energy and macronutrient intakes between the two methods were compared using paired t-test.
Results:
The mean energy intakes of Gene-Health and Photo Estimation were 1,937.0 kcal and 1,928.3 kcal, respectively. There were no significant differences in intakes of energy, carbohydrate, fat, and energy from fat (%) between two methods. The protein intake and energy from protein (%) of the Gene-Health were higher than those from the Photo Estimation. The energy from carbohydrate (%) for the Photo Estimation was higher than that of the Gene-Health. The Pearson correlation coefficients, weighted Kappa coefficients, and adjacent agreements for energy and macronutrient intakes between the two methods ranged from 0.382 to 0.607, 0.588 to 0.649, and 79.6% to 86.7%, respectively.
Conclusion
The Gene-Health application shows acceptable validity as a dietary intake assessment tool for energy and macronutrients. Further studies with female subjects and various age groups will be needed.