1.PKC alpha induces differentiation through ERK1/2 phosphorylation in mouse keratinocytes.
Haeng Ran SEO ; Yoo Wook KWAN ; Chul Koo CHO ; Sangwoo BAE ; Su Jae LEE ; Jae Won SOH ; Hee Yong CHUNG ; Yun Sil LEE
Experimental & Molecular Medicine 2004;36(4):292-299
Epidermal keratinocyte differentiation is a tightly regulated stepwise process that requires protein kinase C (PKC) activation. Studies on cultured mouse keraitnocytes induced to differentiate with Ca2+ have indirectly implicated the involvement of PKC alpha isoform. When PKC alpha was overexpressed in undifferentiated keratinocytes using adenoviral system, expressions of differentiation markers such as loricrin, filaggrin, keratin 1 (MK1) and keratin 10 (MK10) were increased, and ERK1/2 phosphorylation was concurrently induced without change of other MAPK such as p38 MAPK and JNK1/2. Similarly, transfection of PKC alphakinase active mutant (PKC alpha- CAT) in the undifferentiated keratinocyte, but not PKC beta-CAT, also increased differentiation marker expressions. On the other hand, PKC alphadominant negative mutant (PKC beta-KR) reduced Ca2+ -mediated differentiation marker expressions, while PKC beta-KR did not, suggesting that PKC alphais responsible for keratinocyte differentiation. When downstream pathway of PKC alphain Ca2+ - mediated differentiation was examined, ERK1/2, p38 MAPK and JNK1/2 phosphorylations were increased by Ca2+ shift. Treatment of keratinocytes with PD98059, MEK inhibitor, and SB20358, p38 MAPK inhibitor, before Ca2+ shift induced morphological changes and reduced expressions of differentiation markers, but treatment with SP60012, JNK1/2 inhibitor, did not change at all. Dominant negative mutants of ERK1/2 and p38 MAPK also inhibited the expressions of differentiation marker expressions in Ca2+ shifted cells. The above results indicate that both ERK1/2 and p38 MAPK may be involved in Ca2+- mediated differentiation, and that only ERK1/2 pathway is specific for PKCa-mediated differentiation in mouse keratinocytes.
Animals
;
Calcium/pharmacology/physiology
;
Cell Differentiation/physiology
;
Intermediate Filament Proteins/analysis/metabolism
;
Keratinocytes/cytology/*enzymology
;
Membrane Proteins/analysis/metabolism
;
Mice
;
Mitogen-Activated Protein Kinase 1/*metabolism
;
Mitogen-Activated Protein Kinase 3/*metabolism
;
Phosphorylation
;
Protein Kinase C/genetics/*physiology
;
Research Support, Non-U.S. Gov't
;
p38 Mitogen-Activated Protein Kinases/metabolism