1.Analysis of Nursing Task in Integrated Nursing Care Wards by Hospital Type
Yeojin YI ; Haena LIM ; Ji-Mee KIM ; Jung-Hee SONG
Journal of Korean Academy of Nursing Administration 2022;28(2):131-141
Purpose:
This study aimed to identify the job characteristics of the integrated nursing care wards.
Methods:
For 388 nurses working in the integrated nursing wards of 30 hospitals, the importance, performance frequency, and difficulty of nursing tasks were analyzed using 31 job categories (678 items). Nursing tasks were analyzed using ImportancePerformance Analysis by hospital type.
Results:
Tertiary hospitals and general hospitals were analyzed using Importance-Performance Analysis, and the categories of general nursing intervention, spiritual and end of life nursing, and nursing during examination differed by hospital type. Other tasks into the same categories. 'Keep up the Good Work' includes 12 tasks: nursing assessment, medication and blood transfusion, admission or discharge management, and cooperation and coordination. 'Concentrate Here' had three tasks: emergency care, education to nurses, self-development. 'Possible Overkill' included supportive contact, environmental management, and product management. 'Low Priority' has ten tasks, including administration and organization management, facility management.
Conclusion
Nurses had different perceptions of importance and difficulty according to the tasks.Nursing during the examination, general nursing intervention, spiritual nursing, and end-of-life nursing were placed in different domains according to hospital type. Therefore, it is necessary to establish the nursing tasks and plan to improve workforce management, reflecting these differences.
2.Nitric Oxide Synthase Mediates Carbon Monoxide-Induced Stimulation of L-type Calcium Currents in Human Jejunal Smooth Muscle Cells.
Inja LIM ; Jihyun YUN ; Seungtae KIM ; Soonchul MYUNG ; Taeho KIM ; Hyoweon BANG
The Korean Journal of Physiology and Pharmacology 2004;8(3):161-166
Exogenous carbon monoxide (0.2%) increases L-type calcium (Ca2+) current in human jejunal circular smooth muscle cells. The stimulatory effect of carbon monoxide (CO) on L-type Ca2+ current is inhibited by pre-application of L-NNA, a classical competitive inhibitor of nitric oxide synthase (NOS) with no significant isoform selectivity (Lim, 2003). In the present study, we investigated which isoform of NOS affected CO induced stimulation of L-type Ca2+ current in human jejunal circular smooth muscle cells. Cells were voltage clamped by whole-cell mode patch clamp technique, and membrane currents were recorded with 10 mM barium as the charge carrier. Before the addition of CO, cells were pretreated with each inhibitor of three NOS isoforms for 15 minutes. CO-stimulating effect on L-type Ca2+ current was partially blocked by N- (3- (Amino-methyl) benzyl) acetamidine-2HCl (1400W, an iNOS inhibitor). On the other hand, 3-bromo-7-nitroindazole (BNI, a nNOS inhibitor) or N5- (1-Iminoethyl)-L-ornithine dihydrochloride (L-NIO, an eNOS inhibitor) completely blocked the CO effect. These data suggest that low dose of exogenous CO may stimulate all NOS isoforms to increase L-type Ca2+ channel through nitric oxide (NO) pathway in human jejunal circular smooth muscle cells.
Barium
;
Calcium Channels, L-Type
;
Calcium*
;
Carbon Monoxide
;
Carbon*
;
Hand
;
Humans*
;
Membranes
;
Muscle, Smooth*
;
Myocytes, Smooth Muscle*
;
Nitric Oxide Synthase*
;
Nitric Oxide*
;
Protein Isoforms
3.Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models.
Young Won KIM ; Tong ZHOU ; Eun A KO ; Seongtae KIM ; Donghee LEE ; Yelim SEO ; Nahee KWON ; Taeyeon CHOI ; Heejung LIM ; Sungvin CHO ; Gwanhui BAE ; Yuseong HWANG ; Dojin KIM ; Hyewon PARK ; Minjae LEE ; Eunkyung JANG ; Jeongyoon CHOI ; Hyemi BAE ; Inja LIM ; Hyoweon BANG ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(2):151-159
Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.
Animals
;
Biological Processes
;
Chemotaxis
;
Classification
;
Cytokines
;
Dermatitis, Contact*
;
Gene Expression
;
Gene Ontology
;
Genome
;
Hypersensitivity
;
Immune System
;
Interleukin-6
;
Mice*
;
Models, Animal
;
Neutrophils
;
Pruritus*
;
RNA*
;
Sensation
;
Sequence Analysis, RNA*
;
Signal Transduction
;
Skin*
;
Transcriptome
;
Transient Receptor Potential Channels
;
Up-Regulation
;
Wound Healing
4.Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene K+ Channels.
Jihyun YUN ; Hyemi BAE ; Sun Eun CHOI ; Jung Ha KIM ; Young Wook CHOI ; Inja LIM ; Chung Soo LEE ; Min Won LEE ; Jae Hong KO ; Seong Jun SEO ; Hyoweon BANG
The Korean Journal of Physiology and Pharmacology 2013;17(1):37-42
Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) K+ channels. To determine whether taxifolin glycoside would block hERG K+ channels, we recorded hERG K+ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG K+ current in a concentration-dependent manner (EC50=9.6+/-0.7 microM). The activation curve of hERG K+ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG K+ channels that function by facilitating activation and inactivation process.
Dermatitis, Atopic
;
Humans
;
Long QT Syndrome
;
Quercetin