1.Predicting renal function using fundus photography: role of confounders
Hyun-Woong PARK ; Hae Ri KIM ; Ki Yup NAM ; Bum Jun KIM ; Taeseen KANG
The Korean Journal of Internal Medicine 2025;40(2):310-320
Background/Aims:
The kidneys and retina are highly vascularized organs that frequently exhibit shared pathologies, with nephropathy often associated with retinopathy. Previous studies have successfully predicted estimated glomerular filtration rates (eGFRs) using fundus photographs. We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formulas in eGFR prediction.
Methods:
We enrolled patients with fundus photographs and corresponding creatinine measurements taken on the same date. One photograph per eye was randomly selected, resulting in a final dataset of 45,108 patients (88,260 photographs). Data including sex, age, and blood creatinine levels were collected for eGFR calculation using the MDRD and CKD-EPI formulas. EfficientNet B3 models were used to predict each parameter.
Results:
Deep neural network models accurately predicted age and sex using fundus photographs. Sex was identified as a confounding variable in creatinine prediction. The MDRD formula was more susceptible to this confounding effect than the CKD-EPI formula. Notably, the CKD-EPI formula demonstrated superior performance compared to the MDRD formula (area under the curve 0.864 vs. 0.802).
Conclusions
Fundus photographs are a valuable tool for screening renal function using deep neural network models, demonstrating the role of noninvasive imaging in medical diagnostics. However, these models are susceptible to the influence of sex, a potential confounding factor. The CKD-EPI formula, less susceptible to sex bias, is recommended to obtain more reliable results.
2.Predicting renal function using fundus photography: role of confounders
Hyun-Woong PARK ; Hae Ri KIM ; Ki Yup NAM ; Bum Jun KIM ; Taeseen KANG
The Korean Journal of Internal Medicine 2025;40(2):310-320
Background/Aims:
The kidneys and retina are highly vascularized organs that frequently exhibit shared pathologies, with nephropathy often associated with retinopathy. Previous studies have successfully predicted estimated glomerular filtration rates (eGFRs) using fundus photographs. We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formulas in eGFR prediction.
Methods:
We enrolled patients with fundus photographs and corresponding creatinine measurements taken on the same date. One photograph per eye was randomly selected, resulting in a final dataset of 45,108 patients (88,260 photographs). Data including sex, age, and blood creatinine levels were collected for eGFR calculation using the MDRD and CKD-EPI formulas. EfficientNet B3 models were used to predict each parameter.
Results:
Deep neural network models accurately predicted age and sex using fundus photographs. Sex was identified as a confounding variable in creatinine prediction. The MDRD formula was more susceptible to this confounding effect than the CKD-EPI formula. Notably, the CKD-EPI formula demonstrated superior performance compared to the MDRD formula (area under the curve 0.864 vs. 0.802).
Conclusions
Fundus photographs are a valuable tool for screening renal function using deep neural network models, demonstrating the role of noninvasive imaging in medical diagnostics. However, these models are susceptible to the influence of sex, a potential confounding factor. The CKD-EPI formula, less susceptible to sex bias, is recommended to obtain more reliable results.
3.Predicting renal function using fundus photography: role of confounders
Hyun-Woong PARK ; Hae Ri KIM ; Ki Yup NAM ; Bum Jun KIM ; Taeseen KANG
The Korean Journal of Internal Medicine 2025;40(2):310-320
Background/Aims:
The kidneys and retina are highly vascularized organs that frequently exhibit shared pathologies, with nephropathy often associated with retinopathy. Previous studies have successfully predicted estimated glomerular filtration rates (eGFRs) using fundus photographs. We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formulas in eGFR prediction.
Methods:
We enrolled patients with fundus photographs and corresponding creatinine measurements taken on the same date. One photograph per eye was randomly selected, resulting in a final dataset of 45,108 patients (88,260 photographs). Data including sex, age, and blood creatinine levels were collected for eGFR calculation using the MDRD and CKD-EPI formulas. EfficientNet B3 models were used to predict each parameter.
Results:
Deep neural network models accurately predicted age and sex using fundus photographs. Sex was identified as a confounding variable in creatinine prediction. The MDRD formula was more susceptible to this confounding effect than the CKD-EPI formula. Notably, the CKD-EPI formula demonstrated superior performance compared to the MDRD formula (area under the curve 0.864 vs. 0.802).
Conclusions
Fundus photographs are a valuable tool for screening renal function using deep neural network models, demonstrating the role of noninvasive imaging in medical diagnostics. However, these models are susceptible to the influence of sex, a potential confounding factor. The CKD-EPI formula, less susceptible to sex bias, is recommended to obtain more reliable results.
4.Predicting renal function using fundus photography: role of confounders
Hyun-Woong PARK ; Hae Ri KIM ; Ki Yup NAM ; Bum Jun KIM ; Taeseen KANG
The Korean Journal of Internal Medicine 2025;40(2):310-320
Background/Aims:
The kidneys and retina are highly vascularized organs that frequently exhibit shared pathologies, with nephropathy often associated with retinopathy. Previous studies have successfully predicted estimated glomerular filtration rates (eGFRs) using fundus photographs. We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formulas in eGFR prediction.
Methods:
We enrolled patients with fundus photographs and corresponding creatinine measurements taken on the same date. One photograph per eye was randomly selected, resulting in a final dataset of 45,108 patients (88,260 photographs). Data including sex, age, and blood creatinine levels were collected for eGFR calculation using the MDRD and CKD-EPI formulas. EfficientNet B3 models were used to predict each parameter.
Results:
Deep neural network models accurately predicted age and sex using fundus photographs. Sex was identified as a confounding variable in creatinine prediction. The MDRD formula was more susceptible to this confounding effect than the CKD-EPI formula. Notably, the CKD-EPI formula demonstrated superior performance compared to the MDRD formula (area under the curve 0.864 vs. 0.802).
Conclusions
Fundus photographs are a valuable tool for screening renal function using deep neural network models, demonstrating the role of noninvasive imaging in medical diagnostics. However, these models are susceptible to the influence of sex, a potential confounding factor. The CKD-EPI formula, less susceptible to sex bias, is recommended to obtain more reliable results.
5.Predicting renal function using fundus photography: role of confounders
Hyun-Woong PARK ; Hae Ri KIM ; Ki Yup NAM ; Bum Jun KIM ; Taeseen KANG
The Korean Journal of Internal Medicine 2025;40(2):310-320
Background/Aims:
The kidneys and retina are highly vascularized organs that frequently exhibit shared pathologies, with nephropathy often associated with retinopathy. Previous studies have successfully predicted estimated glomerular filtration rates (eGFRs) using fundus photographs. We evaluated the performance of the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formulas in eGFR prediction.
Methods:
We enrolled patients with fundus photographs and corresponding creatinine measurements taken on the same date. One photograph per eye was randomly selected, resulting in a final dataset of 45,108 patients (88,260 photographs). Data including sex, age, and blood creatinine levels were collected for eGFR calculation using the MDRD and CKD-EPI formulas. EfficientNet B3 models were used to predict each parameter.
Results:
Deep neural network models accurately predicted age and sex using fundus photographs. Sex was identified as a confounding variable in creatinine prediction. The MDRD formula was more susceptible to this confounding effect than the CKD-EPI formula. Notably, the CKD-EPI formula demonstrated superior performance compared to the MDRD formula (area under the curve 0.864 vs. 0.802).
Conclusions
Fundus photographs are a valuable tool for screening renal function using deep neural network models, demonstrating the role of noninvasive imaging in medical diagnostics. However, these models are susceptible to the influence of sex, a potential confounding factor. The CKD-EPI formula, less susceptible to sex bias, is recommended to obtain more reliable results.
6.Lecanemab: Appropriate Use Recommendations by Korean Dementia Association
Kee Hyung PARK ; Geon Ha KIM ; Chi-Hun KIM ; Seong-Ho KOH ; So Young MOON ; Young Ho PARK ; Sang Won SEO ; Bora YOON ; Jae-Sung LIM ; Byeong C. KIM ; Hee-Jin KIM ; Hae Ri NA ; YongSoo SHIM ; YoungSoon YANG ; Chan-Nyoung LEE ; Hak Young RHEE ; San JUNG ; Jee Hyang JEONG ; Hojin CHOI ; Dong Won YANG ; Seong Hye CHOI
Dementia and Neurocognitive Disorders 2024;23(4):165-187
Lecanemab (product name Leqembi ® ) is an anti-amyloid monoclonal antibody treatment approved for use in Korea for patients with mild cognitive impairment (MCI) or mild dementia due to Alzheimer's disease. The Korean Dementia Association has created recommendations for the appropriate use of lecanemab to assist clinicians. These recommendations include selecting patients for administration, necessary pre-administration tests and preparations,administration methods, monitoring for amyloid related imaging abnormalities (ARIA), and communication with patients and caregivers. Lecanemab is recommended for patients with MCI or mild dementia who confirmed positive amyloid biomarkers, and should not be administered to patients with severe hypersensitivity to lecanemab or those unable to undergo magnetic resonance imaging (MRI) evaluation. To predict the risk of ARIA before administration, apolipoprotein E genotyping is conducted, and regular brain MRI evaluations are recommended to monitor for ARIA during treatment. The most common adverse reactions are infusion-related reactions, which require appropriate management upon occurrence. Additional caution is needed when co-administering with anticoagulants or tissue plasminogen activator due to the risk of macrohemorrhage. Clinicians should consider the efficacy and necessary conditions for administration, as well as the safety of lecanemab, to make a comprehensive decision regarding its use.
7.Lecanemab: Appropriate Use Recommendations by Korean Dementia Association
Kee Hyung PARK ; Geon Ha KIM ; Chi-Hun KIM ; Seong-Ho KOH ; So Young MOON ; Young Ho PARK ; Sang Won SEO ; Bora YOON ; Jae-Sung LIM ; Byeong C. KIM ; Hee-Jin KIM ; Hae Ri NA ; YongSoo SHIM ; YoungSoon YANG ; Chan-Nyoung LEE ; Hak Young RHEE ; San JUNG ; Jee Hyang JEONG ; Hojin CHOI ; Dong Won YANG ; Seong Hye CHOI
Dementia and Neurocognitive Disorders 2024;23(4):165-187
Lecanemab (product name Leqembi ® ) is an anti-amyloid monoclonal antibody treatment approved for use in Korea for patients with mild cognitive impairment (MCI) or mild dementia due to Alzheimer's disease. The Korean Dementia Association has created recommendations for the appropriate use of lecanemab to assist clinicians. These recommendations include selecting patients for administration, necessary pre-administration tests and preparations,administration methods, monitoring for amyloid related imaging abnormalities (ARIA), and communication with patients and caregivers. Lecanemab is recommended for patients with MCI or mild dementia who confirmed positive amyloid biomarkers, and should not be administered to patients with severe hypersensitivity to lecanemab or those unable to undergo magnetic resonance imaging (MRI) evaluation. To predict the risk of ARIA before administration, apolipoprotein E genotyping is conducted, and regular brain MRI evaluations are recommended to monitor for ARIA during treatment. The most common adverse reactions are infusion-related reactions, which require appropriate management upon occurrence. Additional caution is needed when co-administering with anticoagulants or tissue plasminogen activator due to the risk of macrohemorrhage. Clinicians should consider the efficacy and necessary conditions for administration, as well as the safety of lecanemab, to make a comprehensive decision regarding its use.
8.Lecanemab: Appropriate Use Recommendations by Korean Dementia Association
Kee Hyung PARK ; Geon Ha KIM ; Chi-Hun KIM ; Seong-Ho KOH ; So Young MOON ; Young Ho PARK ; Sang Won SEO ; Bora YOON ; Jae-Sung LIM ; Byeong C. KIM ; Hee-Jin KIM ; Hae Ri NA ; YongSoo SHIM ; YoungSoon YANG ; Chan-Nyoung LEE ; Hak Young RHEE ; San JUNG ; Jee Hyang JEONG ; Hojin CHOI ; Dong Won YANG ; Seong Hye CHOI
Dementia and Neurocognitive Disorders 2024;23(4):165-187
Lecanemab (product name Leqembi ® ) is an anti-amyloid monoclonal antibody treatment approved for use in Korea for patients with mild cognitive impairment (MCI) or mild dementia due to Alzheimer's disease. The Korean Dementia Association has created recommendations for the appropriate use of lecanemab to assist clinicians. These recommendations include selecting patients for administration, necessary pre-administration tests and preparations,administration methods, monitoring for amyloid related imaging abnormalities (ARIA), and communication with patients and caregivers. Lecanemab is recommended for patients with MCI or mild dementia who confirmed positive amyloid biomarkers, and should not be administered to patients with severe hypersensitivity to lecanemab or those unable to undergo magnetic resonance imaging (MRI) evaluation. To predict the risk of ARIA before administration, apolipoprotein E genotyping is conducted, and regular brain MRI evaluations are recommended to monitor for ARIA during treatment. The most common adverse reactions are infusion-related reactions, which require appropriate management upon occurrence. Additional caution is needed when co-administering with anticoagulants or tissue plasminogen activator due to the risk of macrohemorrhage. Clinicians should consider the efficacy and necessary conditions for administration, as well as the safety of lecanemab, to make a comprehensive decision regarding its use.
9.Lecanemab: Appropriate Use Recommendations by Korean Dementia Association
Kee Hyung PARK ; Geon Ha KIM ; Chi-Hun KIM ; Seong-Ho KOH ; So Young MOON ; Young Ho PARK ; Sang Won SEO ; Bora YOON ; Jae-Sung LIM ; Byeong C. KIM ; Hee-Jin KIM ; Hae Ri NA ; YongSoo SHIM ; YoungSoon YANG ; Chan-Nyoung LEE ; Hak Young RHEE ; San JUNG ; Jee Hyang JEONG ; Hojin CHOI ; Dong Won YANG ; Seong Hye CHOI
Dementia and Neurocognitive Disorders 2024;23(4):165-187
Lecanemab (product name Leqembi ® ) is an anti-amyloid monoclonal antibody treatment approved for use in Korea for patients with mild cognitive impairment (MCI) or mild dementia due to Alzheimer's disease. The Korean Dementia Association has created recommendations for the appropriate use of lecanemab to assist clinicians. These recommendations include selecting patients for administration, necessary pre-administration tests and preparations,administration methods, monitoring for amyloid related imaging abnormalities (ARIA), and communication with patients and caregivers. Lecanemab is recommended for patients with MCI or mild dementia who confirmed positive amyloid biomarkers, and should not be administered to patients with severe hypersensitivity to lecanemab or those unable to undergo magnetic resonance imaging (MRI) evaluation. To predict the risk of ARIA before administration, apolipoprotein E genotyping is conducted, and regular brain MRI evaluations are recommended to monitor for ARIA during treatment. The most common adverse reactions are infusion-related reactions, which require appropriate management upon occurrence. Additional caution is needed when co-administering with anticoagulants or tissue plasminogen activator due to the risk of macrohemorrhage. Clinicians should consider the efficacy and necessary conditions for administration, as well as the safety of lecanemab, to make a comprehensive decision regarding its use.
10.SoUth Korean study to PrEvent cognitive impaiRment and protect BRAIN health through Multidomain interventions via facE-to-facE and video communication plaTforms in mild cognitive impairment (SUPERBRAIN-MEET): Protocol for a Multicenter Randomized Controlled Trial
Soo Hyun CHO ; Hae Jin KANG ; Yoo Kyoung PARK ; So Young MOON ; Chang Hyung HONG ; Hae Ri NA ; Hong-Sun SONG ; Muncheong CHOI ; Sooin JEONG ; Kyung Won PARK ; Hyun Sook KIM ; Buong-O CHUN ; Jiwoo JUNG ; Jee Hyang JEONG ; Seong Hye CHOI
Dementia and Neurocognitive Disorders 2024;23(1):30-43
Background:
and Purpose: The SoUth Korea study to PrEvent cognitive impaiRment and protect BRAIN health through lifestyle intervention (SUPERBRAIN) proved the feasibility of multidomain intervention for elderly people. One-quarter of the Korean population over 65 years of age has mild cognitive impairment (MCI). Digital health interventions may be costeffective and have fewer spatial constraints. We aim to examine the efficacy of a multidomain intervention through both face-to-face interactions and video communication platforms using a tablet personal computer (PC) application in MCI.
Methods:
Three hundred participants aged 60–85 years, with MCI and at least one modifiable dementia risk factor, will be recruited from 17 centers and randomly assigned in a 1:1 ratio to the multidomain intervention and the waiting-list control groups. Participants will receive the 24-week intervention through the tablet PC SUPERBRAIN application, which encompasses the following five elements: managing metabolic and vascular risk factors, cognitive training,physical exercise, nutritional guidance, and boosting motivation. Participants will attend the interventions at a facility every 1–2 weeks. They will also engage in one or two self-administered cognitive training sessions utilizing the tablet PC application at home each week. They will participate in twice or thrice weekly online exercise sessions at home via the ZOOM platform. The primary outcome will be the change in the total scale index score of the Repeatable Battery for the Assessment of Neuropsychological Status from baseline to study end.
Conclusions
This study will inform the effectiveness of a comprehensive multidomain intervention utilizing digital technologies in MCI.

Result Analysis
Print
Save
E-mail