1.The characteristics of opioid receptors distributed in the neurons of habenula.
Sui-sheng WU ; Chun-xiao ZHANG ; Min HUANG ; Xiao-jie CAO ; Shao WANG
Chinese Journal of Applied Physiology 2005;21(1):64-67
AIMTo explore the types of receptors distributed in MHb and LHb.
METHODSRecording the currents of potassium channels in Hb neurons isolated from the rats 10-15 days after birth. To distinguish the types of receptors distributed in MHb and LHb by using the agonists of mu receptor DAMGO, and sigma receptor DPDPE.
RESULTSTwo types of current of K+ channels were recorded, the transient rectifier and delayed rectifier potassium channels. DAMGO or DPDPE increased the intensity of current of K+ channels.
CONCLUSIONIn MHb there was a higher density of sigma receptor, and in LHb a higher density of mu receptor distributed.
Animals ; Animals, Newborn ; Habenula ; metabolism ; Neural Pathways ; Neurons ; metabolism ; Potassium Channels ; metabolism ; Rats ; Receptors, Opioid ; metabolism
2.The roles of habenula and related neural circuits in neuropsychiatric diseases.
Yuxing WU ; Shihong ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2019;48(3):310-317
The habenula is a small and bilateral nucleus above dorsal thalamus, which contains several different types of neurons. The habenula has extensive connections with the forebrain, septum and monoaminergic nuclei in the midbrain and brainstem. Habenula is known as an 'anti-reward' nucleus, which can be activated by aversive stimulus and negative reward prediction errors. Accumulating researchs have implicated that the habenula is involved in several behaviors crucial to survival. Meanwhile, the roles of the habenula in neuropsychiatric diseases have received increasing attention. This review summaries the studies regarding the roles of habenula and the related circuits in neuropathic pain, depression, drug addiction and schizophrenia, and discusses the possibility to use the habenula as a treatment target.
Depressive Disorder
;
Habenula
;
Humans
;
Mental Disorders
;
pathology
;
Mesencephalon
;
Neurons
;
metabolism
;
Reward
3.Effects and possible mechanism of cocaine on the neurons of lateral habenular nucleus.
Chun-xiao ZHANG ; Wen-jie ZHANG ; Yong-feng LIU ; Shao WANG
Chinese Journal of Applied Physiology 2007;23(4):442-445
AIMTo investigate the effects and the possible mechanism of cocaine on the neurons of lateral habenular nucleus (LHb).
METHODSWe observed the effects on c-Fos protein expression in lateral habenular nucleus and medial habenular nucleus after injecting cocaine into a belly cavity and spontaneous and evoked discharge of pain-correlative unit through iontophoresis of cocaine into LHb. The delayed rectifier K+ current was recorded in the acute isolated LHb neuron in whole-cell mode.
RESULTS(1) The c-Fos protein expression was increased by cocaine treatment in LHb, but little effect in MHb. (2) Iontophoresis of cocaine into LHb increased the discharges of pain excitation unit and enhanced excitation response to noxious stimulation, but it decreased the discharges of pain inhibition unit and its responses to noxious stimulation in LHb. Cocaine inhibited the delayed rectifier K+ current.
CONCLUSIONCocaine can excite the LHb and increase its sensitivity. The probable mechanism is that cocaine inhibits the delayed rectifier K+ channels.
Animals ; Cocaine ; pharmacology ; Habenula ; drug effects ; metabolism ; physiology ; Proto-Oncogene Proteins c-fos ; metabolism ; Rats ; Rats, Wistar
4.Sexual Dimorphism of Inputs to the Lateral Habenula in Mice.
Xue LIU ; Hongren HUANG ; Yulin ZHANG ; Liping WANG ; Feng WANG
Neuroscience Bulletin 2022;38(12):1439-1456
The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.
Animals
;
Male
;
Mice
;
Glutamic Acid/metabolism*
;
Habenula/metabolism*
;
Hypothalamus/metabolism*
;
Neural Pathways/physiology*
;
Sex Characteristics
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Female