2.A meningococcal B vaccine induces cross-protection against gonorrhea
Clinical and Experimental Vaccine Research 2019;8(2):110-115
PURPOSE: Neisseria meningitidis and Neisseria gonorrhoeae share between 80% and 90% of their genetic sequence. Meningococcal serogroup B vaccines based on outer membrane vesicles—such as VA-MENGOC-BC—could cross-protect against gonorrhea. The aim of this study was to analyze the incidence rates of gonorrhea and other sexually transmitted diseases with respect to the use of the VA-MENGOC-BC vaccine. MATERIALS AND METHODS: Health statistics between 1970 and 2017 were reviewed and the incidence of meningococcal disease and sexually transmitted diseases (gonorrhea, syphilis, condyloma acuminatum, hepatitis B and human immunodeficiency virus infection) were analyzed during the pre- and post-vaccination periods. Gonorrhea incidence was also analyzed by age groups. RESULTS: VA-MENGOC-BC was successfully used to control a meningococcal epidemic in Cuba. The strategy to combat the epidemic was carried out in two stages. The first one was a nationwide mass-vaccination campaign from 1989 to 1990, targeting the population at highest-risk aged 3 months to 24 years. During the second stage, begun in 1991, it was included in the Expanded Immunization Program. Gonorrhea incidence increased from 1970 to 1989. However, after the VA-MENGOC-BC massive vaccination campaign a sharp decrease of gonorrhea incidence was observed. It lasted between 1989 and 1993. A second incidence peak was detected in 1995, but it dropped again. Data clearly show a decline in the incidence of gonorrhea following massive vaccination, in contrast with other sexually transmitted diseases. Incidence rates in unvaccinated age groups also decreased, probably due to herd immunity. CONCLUSION: There is evidence that VA-MENGOC-BC could induce a moderate protection against gonorrhea.
Cuba
;
Gonorrhea
;
Hepatitis B
;
HIV
;
Humans
;
Immunity, Herd
;
Immunization Programs
;
Incidence
;
Membranes
;
Neisseria gonorrhoeae
;
Neisseria meningitidis
;
Serogroup
;
Sexually Transmitted Diseases
;
Syphilis
;
Vaccination
;
Vaccines
3.Towards the Application of Human Defensins as Antivirals.
Mee Sook PARK ; Jin Il KIM ; Ilseob LEE ; Sehee PARK ; Joon Yong BAE ; Man Seong PARK
Biomolecules & Therapeutics 2018;26(3):242-254
Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express α- and β-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the ‘defensin vaccine’ concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.
Antiviral Agents*
;
Defensins*
;
Dengue Virus
;
HIV
;
Humans*
;
Immunity, Innate
;
Influenza A virus
;
Models, Animal
;
Peptides
;
Respiratory Syncytial Viruses
;
RNA Viruses
4.Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.
Dongfang LIU ; Shuo TIAN ; Kai ZHANG ; Wei XIONG ; Ndongala Michel LUBAKI ; Zhiying CHEN ; Weidong HAN
Protein & Cell 2017;8(12):861-877
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Animals
;
HIV Infections
;
immunology
;
therapy
;
HIV-1
;
immunology
;
Humans
;
Immunity, Cellular
;
Immunological Synapses
;
Immunotherapy
;
Killer Cells, Natural
;
transplantation
;
Neoplasms
;
immunology
;
therapy
;
Receptors, Antigen, T-Cell
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
T-Lymphocytes
;
immunology
;
transplantation
5.IL15 DNA adjuvant enhances cellular and humoral immune responses induced by DNA and adenoviral vectors encoding HIV-1 subtype B gp160 gene.
Ke XU ; Shao-Hua XU ; Xia FENG ; Shuang-Qing YU ; Yi ZENG
Chinese Journal of Virology 2014;30(1):62-65
To enhance the immunogenicity of DNA and adenoviral vector vaccines expressing HIV-1 subtype B gp160, human interleukin 15 (hIL15) DNA adjuvant (pVR-hIL15) was constructed. BALB/c mice received DNA prime/protein boost immunization with pVR-HIVgp160/Ad5-HIVgp160 alone or combined with pVR-hIL15. Cellular and humoral immune responses were evaluated by IFN-gamma enzyme-linked immunosorbent spot assay and enzyme-linked immunosorbent assay, respectively. Compared with those immunized with vaccines alone, the mice immunized with vaccines combined with pVR-hIL15 had significantly increased specific cellular response and antibody titer (P < 0.05). It suggests that the IL15 DNA adjuvant can enhance the immune responses induced by prime-boost regimen using DNA and adenoviral vector encoding HIV-1 subtype B gp160.
Adenoviridae
;
genetics
;
Adjuvants, Immunologic
;
Animals
;
Antibodies, Viral
;
immunology
;
Antibody Specificity
;
Female
;
Genetic Vectors
;
genetics
;
HIV Envelope Protein gp120
;
immunology
;
HIV Envelope Protein gp160
;
genetics
;
immunology
;
HIV Envelope Protein gp41
;
immunology
;
Humans
;
Immunity, Cellular
;
Immunity, Humoral
;
Interleukin-15
;
genetics
;
Mice
;
Mice, Inbred BALB C
;
Vaccines, DNA
;
genetics
;
immunology
6.Role of Cyclic GMP-AMP Synthase in Sensing Human Immunodeficiency Virus.
Yeon Soo PARK ; Im Hyeon KIM ; Young Sang KOH
Journal of Bacteriology and Virology 2014;44(2):206-207
Cyclic guanosine monophosphate adenosine monophosphate (cGAMP) synthase (cGAS) detects human immunodeficiency virus (HIV) and produces cGAMP to induce cytokines. Reverse transcribed DNA of HIV is critical for triggering innate immune responses as inhibitor of HIV reverse transcriptase blocked the induction of interferon-beta by the virus. Furthermore, knockout of cGAS in human or mouse cell lines abrogated the production of cytokines by HIV infection highlighting the essential role of cGAS in detection of HIV and other retroviruses.
Adenosine Monophosphate
;
Animals
;
Cell Line
;
Cytokines
;
DNA
;
Guanosine Monophosphate
;
HIV Infections
;
HIV Reverse Transcriptase
;
HIV*
;
Humans
;
Immunity, Innate
;
Interferon-beta
;
Mice
;
Retroviridae
7.Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities.
Lu LU ; Fei YU ; Lan-Ying DU ; Wei XU ; Shi-Bo JIANG
Chinese Medical Journal 2013;126(12):2374-2379
OBJECTIVETo review the mechanisms by which HIV evades different components of the host immune system.
DATA SOURCESThis review is based on data obtained from published articles from 1991 to 2012. To perform the PubMed literature search, the following key words were input: HIV and immune evasion.
STUDY SELECTIONArticles containing information related to HIV immune evasion were selected.
RESULTSAlthough HIV is able to induce vigorous antiviral immune responses, viral replication cannot be fully controlled, and neither pre-existing infected cells nor latent HIV infection can be completely eradicated. Like many other enveloped viruses, HIV can escape recognition by the innate and adaptive immune systems. Recent findings have demonstrated that HIV can also successfully evade host restriction factors, the components of intrinsic immune system, such as APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G), TRIM5α (tripartite motif 5-α), tetherin, and SAMHD1 (SAM-domain HD-domain containing protein).
CONCLUSIONSHIV immune evasion plays an important role in HIV pathogenesis. Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.
APOBEC-3G Deaminase ; Adaptive Immunity ; Antibodies, Neutralizing ; immunology ; Antigens, CD ; physiology ; Carrier Proteins ; physiology ; Complement System Proteins ; immunology ; Cytidine Deaminase ; physiology ; GPI-Linked Proteins ; physiology ; HIV-1 ; immunology ; Humans ; Immune Evasion ; Killer Cells, Natural ; immunology ; Monomeric GTP-Binding Proteins ; physiology ; SAM Domain and HD Domain-Containing Protein 1
8.Research progress in immune reconstruction of AIDS induced by modern medical intervention.
Zhen LIU ; Ming LIU ; Yong LI ; Jie WANG
China Journal of Chinese Materia Medica 2013;38(15):2519-2522
Immune reconstruction in the treatment of AIDS has became one of hot topics in the field of aids research over the world. In this paper, the interventions of immune reconstitution were sumarized, but because of the clinical efficacy of these interventions still need to be verified and better solutions of their side effects also need to be found, clinical application of these interventions are still in process.
Acquired Immunodeficiency Syndrome
;
drug therapy
;
immunology
;
prevention & control
;
therapy
;
Anti-HIV Agents
;
pharmacology
;
therapeutic use
;
Humans
;
Immunity
;
drug effects
;
Immunotherapy, Adoptive
;
Medicine, Chinese Traditional
;
Vaccination
9.Disseminated Herpes Zoster in an Immunocompetent Elderly Patient.
Keon Jung YOON ; Su Hwa KIM ; Eun Ha LEE ; Ji Hye CHOI
The Korean Journal of Pain 2013;26(2):195-198
Herpes zoster is a cutaneous infection that is characterized by an acute vesicobullous rash with ipsilateral one or two dermatomal distribution and painful allodynia, while predominantly being found in the elderly. Extensive cutaneous dissemination has been reported in immune-compromised patients, such as those who suffer from HIV infections, cancer, chemotherapy, and corticosteroid therapy patients. However, we report a case of disseminated herpes zoster infection in an immuno-competent elderly individual.
Aged
;
Exanthema
;
Herpes Zoster
;
Herpes Zoster Oticus
;
HIV Infections
;
Humans
;
Hyperalgesia
;
Immunity, Cellular
10.Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by B cell activation and RT-PCR cloning.
Hui-Min WANG ; Ke XU ; Shuang-Qing YU ; Lin-Lin DING ; Hai-Yan LUO ; Robin FLINKO ; George K LEWIS ; Xia FENG ; Ji-Rong SHAO ; Yong-Jun GUAN ; Yi ZENG
Chinese Journal of Virology 2012;28(4):358-365
To obtain protective human monoclonal antibody from HIV-1 infected person, we adapted a technology for isolating antigen specific monoclonal antibody from human memory B cells through in vitro B cell activation coupled with RT-PCT and expression cloning. Human B cells were purified by negative sorting from PBMCs of HIV-1 infected individuals and memory B cells were further enriched using anti-CD27 microbeads. Two hundred memory B cells per well were cultured in 96-well round-bottom plates Env-specific antibodies in supernatants were with feeder cells in medium containing EBV and CpG. screened by ELISA after 1-2 weeks' culture. Cells from positive wells of Env-specific antibody were harvested and total RNA was isolated. Human VH and Vkappa or Vlambda genes were amplified by RT-PCR and cloned into IgG1 and kappa or lambda expressing vectors. Functional VH and Vkappa or Vlambda were identified by cotransfecting 293T cells with individual heavy chain and light chain clones followed by analysis of culture supernatants by ELISA for Env-specific antibodies. Finally, corresponding mAb was produced by transient transfection of 293T cells with the identified VH and Vkappa/lambda pair and purified by protein A affinity chromatography. Purified monocolonal antibodies were used for HIV-1 specific antibody-dependent cell-mediated cytotoxicity (ADCC) and neutralizing activity assay. Four monocolonal Env-specific antibodies were isolated from one HIV-1 subtype B' infected individual. Two of them showed strong ADCC activity and one showed weak neutralizing activity against HIV-1. Its further studies on their application in therapeutic or prophylactic vaccines against HIV-1 should be grounded.
Antibodies, Monoclonal
;
genetics
;
immunology
;
Antibody Specificity
;
Asian Continental Ancestry Group
;
B-Lymphocytes
;
immunology
;
Cloning, Molecular
;
HEK293 Cells
;
HIV Infections
;
blood
;
immunology
;
HIV-1
;
immunology
;
pathogenicity
;
Humans
;
Immunity, Humoral
;
Neutralization Tests
;
Polymerase Chain Reaction
;
env Gene Products, Human Immunodeficiency Virus
;
immunology

Result Analysis
Print
Save
E-mail