1.Membrane electrical properties of visceral nociceptive neurons in anterior cingulate gyrus of cat.
Chinese Journal of Applied Physiology 2003;19(3):257-260
AIMTo explore the cerebral cortex mechanism of visceral nociceptive sensation and its characteristics on the cell level, we investigated the membrane electrical properties of 176 stimulus-relative neurons of greater splanchnic nerve (GSN) in anterior cingulate gyrus (ACG) of 20 adult healthy cats.
METHODSWe used intracellular recording techniques of glass microelectrode and injected polarizing current into the neurons in ACG.
RESULTSAmong 176 neurons, 148 were visceral nociceptive neurons (VNNs) and 28 non-visceral nociceptive neurons (NVNNs). The membrane resistance (Rm), time constant (tau), membrane capacity (Cm), and the I-V curve of both VNNs and NVNNs in ACG were significantly different. The discharge frequency and amplitude of both VNNs and NVNNs produced by injecting depolarized current were different, too.
CONCLUSIONThe results suggest that structure of cell membrane, volume of the soma, and other aspects of morphology between VNNs and NVNNs in ACG may have significant differences. The results also might provide progressively experimental evidence for specific theory of pain sensation.
Animals ; Cats ; Gyrus Cinguli ; cytology ; physiology ; Membrane Potentials ; Nociceptors ; physiology ; Splanchnic Nerves ; physiology ; Visceral Afferents ; physiology
2.Comparison of membrane electrical properties of somatic nociceptive and non-nociceptive neurons of the anterior cingulate gyrus in cats.
Yong ZHANG ; Yang YAO ; Yu YANG ; Min-Fan WU
Acta Physiologica Sinica 2015;67(2):181-185
Using intracellular potential recording technique in vivo, a series of hyperpolarizing and depolarizing currents at different intensities with a 50-ms duration were injected to somatic nociceptive neurons (SNNs) and somatic non-nociceptive neurons (SNNNs) in the anterior cingulate gyrus (ACG) of cats. The membrane electrical responses of the neurons were recorded, and the membrane electrical parameters of the neurons were calculated for comparative study on membrane electrical properties of SNNs and SNNNs of the ACG. A total of 188 ACG neurons from 57 cats were recorded. Among the 188 neurons, 172 (91.5%) and 16 (8.5%) were SNNs and SNNNs, respectively. The I-V curves of SNNs and SNNNs in the ACG were "S" shapes. When the absolute value of injected current intensity was less than or equal to 1 nA (≤ 1 nA), the I and V of I-V curves of both SNNs and SNNNs were linearly correlated (rSNNs = 0.99, rSNNNs = 0.99). When the absolute value of injected current intensity was more than 1 nA, both SNNs and SNNNs showed a certain inward or outward rectification behavior. Compared with SNNNs, SNNs had stronger rectification and lower adaptability (P < 0.01). With the increase of injected current intensity, the changes of frequency of discharges of SNNs were higher than those of SNNNs. In addition, the membrane resistance (Rm), the membrane capacity (Cm) and the time constant (τ) of SNNs were larger than those of SNNNs (P < 0.05 or P < 0.01). The differences in the membrane electrical properties between SNNs and SNNNs in the ACG suggested the disparity in neuronal cell size and cell membrane structure between them. The results of this study provided the experimental basis for deeply elucidating the mechanisms of somatic nociceptive sensation and characteristics on the membrane electrical aspects of ACG neurons.
Animals
;
Cats
;
Gyrus Cinguli
;
cytology
;
Membrane Potentials
;
Neurons
;
physiology
;
Nociceptors
;
physiology
3.Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others.
Chenyu PANG ; Yuqing ZHOU ; Shihui HAN
Neuroscience Bulletin 2024;40(2):157-170
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Adult
;
Humans
;
Brain Mapping
;
Pain
;
Empathy
;
Racism
;
Gyrus Cinguli/physiology*
;
Magnetic Resonance Imaging
;
Brain/physiology*
4.Inhibitory effect of anterior cingulate cortex on spontaneous activity of thalamic ventrobasal nucleus neurons..
Wen SI ; Jing JIN ; Shi-Ning DENG ; Shu-Ming AN ; Liang YIN ; Xiao-Hua CAO
Acta Physiologica Sinica 2009;61(3):279-284
The purpose of this study was to investigate the influence of electrical stimulation of anterior cingulate cortex (ACC) on spontaneous activity of neurons in thalamic ventrobasal nucleus (VB). Experiments were performed on 12 male Sprague-Dawley rats weighing 250-310 g (4-5 months old). According to Paxinos and Watson's coordinate atlas of the rat, the frontal and parietal cortical areas were exposed by craniotomy, the recording electrodes were then inserted into the VB (P 2.4-4.1 mm, R 2.0-3.5 mm, H 5.2-6.8 mm) and the stimulating electrodes into the ACC (A 1.1-3.0 mm, R 0.0-1.0 mm, H 1.5-2.4 mm). Single-unit activities were recorded extracellularly in the VB by glass micropipettes (impedance 3-8 MOmega) filled with 0.5 mol/L sodium acetate solution containing saturated Fast Green. To study the effects of ACC activation on the spontaneous activities of VB cells, single electrical pulse (0.2 ms duration) was delivered to the ACC by a concentric bipolar stainless steel electrode (0.32 mm outer diameter). An effective ACC stimulation was determined for each VB neuron by gradually increasing the current intensity from 0.1 mA until either a significant change in the spontaneous activity of the VB neuron was observed, or the current intensity reached 0.4 mA. The results showed that ACC stimulation significantly suppressed the spontaneous activities in 12 out of 53 VB neurons (22.6%). (1) After the stimulation was delivered to ACC, the spontaneous activities of different VB neurons were totally suppressed for different time span. (2) There was obvious dose-effect relevance between ACC stimulation intensity and their inhibitory effect. The duration of complete inhibition was prolonged with the increases in the intensity and number of stimulation impulses in ACC. (3) The stimulation in the ACC depressed the spontaneous activities of VB neurons in different forms and this inhibition exhibited an accumulative effect. All these results indicate that the stimulation of ACC exerts an inhibitory influence on the spontaneous activities of VB neurons.
Animals
;
Electric Stimulation
;
Gyrus Cinguli
;
physiology
;
Male
;
Neurons
;
cytology
;
Rats
;
Rats, Sprague-Dawley
;
Thalamic Nuclei
;
cytology
5.An Anterior Cingulate Cortex-to-Midbrain Projection Controls Chronic Itch in Mice.
Ting-Ting ZHANG ; Su-Shan GUO ; Hui-Ying WANG ; Qi JING ; Xin YI ; Zi-Han HU ; Xin-Ren YU ; Tian-Le XU ; Ming-Gang LIU ; Xuan ZHAO
Neuroscience Bulletin 2023;39(5):793-807
Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.
Mice
;
Animals
;
Gyrus Cinguli/physiology*
;
Pruritus/pathology*
;
Mesencephalon
;
Cerebral Cortex/pathology*
;
Neurons/pathology*
6.Brain basis of physical pain and social pain.
Si CHENG ; Si-Jin LI ; Zi-Xin ZHENG ; Dan-Dan ZHANG
Acta Physiologica Sinica 2022;74(4):669-677
Increasing studies have provided cognitive and neuron evidence for not only the similarities, but also the differences between physical pain and social pain in the brain basis. Comparing the similarities and differences of the brain basis of physical pain and social pain helps us to clarify the mechanism of the occurrence and change of pain, and provide theoretical evidence for clinical pain treatment. In this review, we summarized studies to delineate the brain mechanisms of physical pain and social pain. Through the review of existing studies, we found that both physical pain and social pain can invoke the same brain regions that process emotional experience (the dorsal anterior cingulate cortex, anterior insula), emotion regulation (lateral prefrontal cortex) and somatosensory (the posterior insula, secondary sensory cortex). However, the voxel-level activated patterns of physical and social pain differ in the same brain region (dorsal anterior cingulate gyrus, dorsolateral prefrontal cortex, etc.), and the overlapping brain regions (for example, ventrolateral prefrontal cortex) have varied effect on these two types of pain. In addition, studies have shown that the brain activation pattern for social pain may be influenced by the experimental paradigm. Future studies should actively adopt a data-driven way to examine the brain basis of physical pain and social pain, especially the nerve activation mode, aiming to consummate the theory of pain.
Brain
;
Gyrus Cinguli
;
Humans
;
Magnetic Resonance Imaging
;
Pain/psychology*
;
Prefrontal Cortex/physiology*
7.Difference in properties of spontaneous electric activities of visceral nociceptive neurons in bilateral anterior cingulate gyrus of cats.
Min-Fan WU ; Yang YAO ; Yu-Fang LI ; Yu YANG ; Guo-Xi TENG
Acta Physiologica Sinica 2010;62(5):450-454
The aim of the present study is to explore the role of anterior cingulate gyrus (ACG) in bilateral cerebral cortex in visceral nociceptive sensation. Electrical stimulation of greater splanchnic nerve (GSN) was used as visceral nociceptive stimulus, and intracellular recording techniques in vivo was used to record and analyze the responses to stimuli and spontaneous electric activities of the neurons in the bilateral ACG. According to the responses to electrical stimulation of GSN, the neurons in the bilateral ACG were divided into GSN-stimulus-relative neurons (GSRNs) and GSN-stimulus-irrelative ones. According to the characteristics of the evoked responses to electrical stimulation of the GSN, GSRNs could be further classified into visceral nociceptive neurons (VNNs) and non-visceral nociceptive neurons (NVNNs). VNNs included specific visceral nociceptive neurons (SVNNs) and non-specific visceral nociceptive neurons (NSVNNs). The results showed that the percentage of GSRNs in the contralateral ACG (38.18%) was significantly higher than that in the ipsilateral ACG (29.49%, P<0.01), suggesting although GSN afferent fibers project to bilateral ACG, they mainly project to the contralateral ACG. Compared with ipsilateral ACG, contralateral ACG possessed lower proportion of SVNNs and higher proportion of NSVNNs (P<0.01). The absolute values of resting potentials (RP) of GSRNs, VNNs, NVNNs and SVNNs in ipsilateral ACG were less than those of corresponding neurons in contralateral ACG. However, there were no significant differences in the absolute values of RP of NSVNNs between ipsilateral and contralateral ACG. There were no significant differences in modes, frequencies and amplitudes of spontaneous electric activities of VNNs and NVNNs between ipsilateral and contralateral ACG. Additionally, the percentage of neurons having spontaneous electric activities from VNNs was significantly higher than that from NVNNs, which indicated that the excitability of VNNs was higher than that of the NVNNs in bilateral ACG. These results suggest that the patterns and degrees of the responses to nociceptive GSN-stimulation of the ipsilateral and contralateral ACG are different, thus providing new experimental data for the asymmetry of functions of the bilateral brain.
Animals
;
Cats
;
Electric Stimulation
;
Evoked Potentials
;
physiology
;
Female
;
Gyrus Cinguli
;
physiology
;
Male
;
Nociceptors
;
physiology
;
Viscera
;
innervation
;
Visceral Pain
;
physiopathology
8.Empathy for pain: A novel bio-psychosocial-behavioral laboratory animal model.
Jun CHEN ; Zhen LI ; Yun-Fei LV ; Chun-Li LI ; Yan WANG ; Rui-Rui WANG ; Kai-Wen GENG ; Ting HE
Acta Physiologica Sinica 2015;67(6):561-570
Empathy, a basic prosocial behavior, is referred to as an ability to understand and share others' emotional state. Generally, empathy is also a social-behavioral basis of altruism. In contrast, impairment of empathy development may be associated with autism, narcissism, alexithymia, personality disorder, schizophrenia and depression. Thus, study of the brain mechanisms of empathy has great importance to not only scientific and clinical advances but also social harmony. However, research on empathy has long been avoided due to the fact that it has been considered as a distinct feature of human beings from animals, leading to paucity of knowledge in the field. In 2006, a Canadian group from McGill University found that a mouse in pain could be shared by its paired cagemate, but not a paired stranger, showing decreased pain threshold and increased pain responses through emotional contagion while they were socially interacting. In 2014, we further found that a rat in pain could also be shared by its paired cagemate 30 min after social interaction, showing long-term decreased pain threshold and increased pain responses, suggesting persistence of empathy for pain (empathic memory). We also mapped out that the medial prefrontal cortex, including the anterior cingulate cortex, prelimbic cortex and infralimbic cortex, is involved in empathy for pain in rats, suggesting that a neural network may be associated with development of pain empathy in the CNS. In the present brief review, we give a brief outline of the advances and challenges in study of empathy for pain in humans and animals, and try to provide a novel bio-psychosocial-behavioral model for study of pain and its emotional comorbidity using laboratory animals.
Animals
;
Cerebral Cortex
;
physiology
;
Emotions
;
Empathy
;
Gyrus Cinguli
;
physiology
;
Humans
;
Mice
;
Models, Animal
;
Pain
;
Pain Threshold
;
Prefrontal Cortex
;
physiology
;
Rats
9.The impact of mood on the intrinsic functional connectivity.
Zicong WANG ; Sen SONG ; Lihong WANG
Journal of Biomedical Engineering 2014;31(2):262-266
Although a great number of studies have investigated the changes of resting-state functional connectivity (rsFC) in patients with mental disorders, such as depression and schizophrenia etc, little is known how stable the changes are, and whether temporal sad or happy mood can modulate the intrinsic rsFC. In our experiments, happy and sad video clips were used to induce temporally happy and sad mood states in 20 healthy young adults. We collected functional magnetic resonance imaging (fMRI) data while participants were watching happy or sad video clips, which were administrated in two consecutive days. Seed-based functional connectivity analyses were conducted using the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), and amygdala as seeds to investigate neural network related to executive function, attention, and emotion. We also investigated the association of the rsFC changes with emotional arousability level to understand individual differences. There is significantly stronger functional connectivity between the left DLPFC and posterior cingulate cortex (PCC) under sad mood than that under happy mood. The increased connectivity strength was positively correlated with subjects' emotional arousability. The increased positive correlation between the left DLPFC and PCC under sad relative to happy mood might reflect an increased processing of negative emotion-relevant stimuli. The easier one was induced by strong negative emotion (higher emotional arousability), the greater the left DLPFC-PCC connectivity was indicated, the greater the instability of the intrinsic rsFC was shown.
Adult
;
Affect
;
Amygdala
;
physiology
;
Attention
;
Gyrus Cinguli
;
physiology
;
Humans
;
Magnetic Resonance Imaging
;
Prefrontal Cortex
;
physiology
;
Young Adult
10.NMDA receptors contribute to synaptic transmission in anterior cingulate cortex of adult mice.
Jason LIAUW ; Guo-Du WANG ; Min ZHUO
Acta Physiologica Sinica 2003;55(4):373-380
Glutamatergic synapses are common excitatory chemical connections in mammalian central nervous system. At these synapses, most of baseline synaptic transmission is mediated by glutamate AMPA receptors. NMDA receptors that are sensitive to voltage-dependent magnesium blockade selectively contribute to activity-dependent synaptic plasticity. However, inhibition of NMDA receptors by systemic or local administration of NMDA receptor antagonists produced significant effects on different physiological functions that are not believed to depend on NMDA receptor related synaptic plasticity. Here we show that NMDA receptors contribute to synaptic responses in the anterior cingulate cortex (ACC), a region important for cognitive and other brain functions. The contribution of NMDA receptors became more prominent when synapses are stimulated at higher frequencies. Furthermore, at temperatures more close to physiological brain temperatures, more NMDA receptor mediated responses were recorded as compared to the room temperature. These data suggest a new function for NMDA receptors in the ACC as important postsynaptic receptors involved in synaptic transmission, in particular when cells are firing at high frequencies.
Animals
;
Excitatory Postsynaptic Potentials
;
physiology
;
Gyrus Cinguli
;
physiology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Neuronal Plasticity
;
physiology
;
Receptors, N-Methyl-D-Aspartate
;
physiology
;
Synapses
;
physiology
;
Synaptic Transmission
;
physiology