1.The Implementation of Pattern Classifier for Karyotype Classification.
Yong Hoon CHANG ; Kwon Soon LEE ; Gye Rok JUN
Journal of Korean Society of Medical Informatics 1997;3(2):207-214
The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.1.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.
Chromosomes, Human
;
Classification*
;
Humans
;
Karyotype*
2.Capacitive coupling leading to electrical skin burn injury during laparoscopic surgery
Woo Jun KIM ; Gyung Mo SON ; In Young LEE ; Sung Uk YUN ; Gye Rok JEON ; Dong-Hoon SHIN ; Myung Sook KWON ; Jae Yeong KWAK ; Kwang-Ryul BAEK
Journal of Minimally Invasive Surgery 2022;25(3):106-111
Purpose:
Trocar-site burns occurring during laparoscopic surgery have been reported in various cases, and several efforts to reduce them are underway. This study aimed to analyze the effect of capacitive coupling on trocar site by observing electrical and histological changes for electrical skin burn injury.
Methods:
To measure the electrical changes relating to capacitive coupling, the temperature, current, voltage, and impedance around the trocar were measured when an open circuit and a closed circuit were formed using insulation intact instruments and repeated after insulation failure. After the experiment, the tissue around the trocar was collected, and microscopic examination was performed.
Results:
When open circuits were formed with the intact insulation, the impedance was significantly reduced compared to the cases of closed circuits (142.0 Ω vs. 109.3 Ω, p = 0.040). When the power was 30 W and there was insulation failure, no significant difference was measured between the open circuit and the closed circuit (147.7 Ω vs. 130.7 Ω, p = 0.103). Collagen hyalinization, nuclear fragmentation, and coagulation necrosis suggesting burns were observed in the skin biopsy at the trocar insertion site.
Conclusion
This study demonstrated that even with a plastic trocar and electrosurgical instruments that have intact insulation, if an open circuit is formed, capacitive coupling increases, and trocar-site burn can occur. When using electrocautery, careful manipulation must be taken to avoid creating an open circuit to prevent capacitive coupling related to electrical skin burn.