1.A comparison of thermoplasticized injectable gutta-percha techniques in ribbon-shaped canals : adaptation to canal walls.
Hyun Sook HWANG ; Kyung Mo CHO ; Jin Woo KIM
Journal of Korean Academy of Conservative Dentistry 2002;27(4):411-420
The aim of this study is to compare the adaptability of thermoplasticized injectable gutta-percha technique to the canal walls in ribbon-shaped canals. Thirty resin models simulated ribbon-shape canals were instrumented to #40 using .06 taper Profile systems. Three groups of each 10 resin models were obturated by the lateral condensation technique(LC) and the two thermoplasticized injectable gutta-percha technique; Ultrafil Endoset+Obtura II(EO) and Ultrafil Firmset(UF), respectively. After resin model were kept at room temperature for 4 days, they were resected horizontally with microtome at 1, 2, 3, 4 and 5mm levels from apex. At each levels, image of resected surface were taken using CCD camera under a stereomicroscope at x40 magnification and stored. Ratio of the area of gutta-percha was obtained by calculating area of gutta-percha cone to the total area of canal using digitized image-analyzing program. The data were collected then analyzed statistically using One-way ANOVA. The results were as follows. 1. At 1mm levels, there was no statistically significant difference in the mean ratio of gutta-percha among the groups. 2. At 2mm level, EO showed the highest mean ratio of gutta-percha (p<0.05) and there was no significant difference between LC and UF. 3. At 3, 4, 5mm levels, EO and UF had significantly greater mean ratio of gutta-percha than LC(p<0.05) and there was no significant difference between EO and UF. In conclusion, the thermoplasticized injectable gutta-percha techniques demonstrated relatively favorable adaptability to canal walls than lateral condensation technique in ribbon-shaped canals except for 1mm level.
Gutta-Percha
2.A study of insertion depth of gutta percha cones after shaping by Ni-Ti rotary files in simulated canals.
Hyun Gu CHO ; Yun Chan HWANG ; In Nam HWANG ; Won Mann OH
Journal of Korean Academy of Conservative Dentistry 2007;32(6):550-558
The purpose of this study was to evaluate the insertion depth of several brands of master gutta percha cones after shaping by various Ni-Ti rotary files in simulated canals. Fifty resin simulated J-shape canals were instrumented with ProFile, ProTaper and HEROShaper. Simulated canals were prepared with ProFile .04 taper #25 (n = 10), .06 taper #25 (n = 10), ProTaper F2 (n = 10), HEROShaper .04 taper #25 (n = 10) and .06 taper #25 (n = 10). Size #25 gutta percha cones with a .04 & .06 taper from three different brands were used: DiaDent; META; Sure-endo. The gutta percha cones were selected and inserted into the prepared simulated canals. The distance from the apex of the prepared canal to the gutta percha cone tip was measured by image analysis program. Within limited data of this study, the results were as follows 1. When the simulated root canals were prepared with HEROShaper, gutta-percha cones were closely adapted to the root canal. 2. All brands of gutta percha cones fail to go to the prepared length in canal which was instrumented with ProFile, the cones extend beyond the prepared length in canal which was prepared with ProTaper. 3. In canal which was instrumented with HEROShaper .04 taper #25, Sure-endo .04 taper master gutta percha cone was well fitted (p < 0.05). 4. In canal which was instrumented with HEROShaper .06 taper #25, META .06 taper master gutta percha cone was well fitted (p < 0.05). As a result, we concluded that the insertion depth of all brands of master gutta percha cone do not match the rotary instrument, even though it was prepared by crown-down technique, as recommended by the manufacturer. Therefore, the master cone should be carefully selected to match the depth of the prepared canal for adequate obturation.
Dental Pulp Cavity
;
Gutta-Percha*
3.Reference line for computed tomogram of the mandible.
Korean Journal of Oral and Maxillofacial Radiology 2002;32(3):153-157
PURPOSE: This study was performed to determine the proper reference line for taking axial computed tomograms from which the good cross-sectional views can be reformatted by multiplanar reconstruction. METHODS: Three dry mandibles with implanted gutta percha cones in the extracted socket were scanned axially according to 6 reference lines of 2 mandibular positions with computed tomogram Hitachi W550. The accuracy of measurements of the lengths of implanted gutta percha cones in the each cross-sectional view reformatted from axial computed tomogram by multiplanar reconstruction was evaluated. RESULTS: The difference between the measurements and the real length of implant was smallest in the bucco-lingual views reformatted from the axial views scanned according to the reference line of group V-a. The smaller the angle difference between reference line and occlusal line was, the smaller the difference between the measurements in the bucco-lingual views reformatted from axial views and the real length of implant. The majority of measured widths of implants in the bucco-lingually reformatted views were larger than the actual values. CONCLUSIONS: When the mandible is inclined within the limitation of gantry angle and scanned with the reference line coincident with occlusal plane, the bucco-lingual view can be reformatted without deformation of images from the axially scanned images.
Dental Occlusion
;
Gutta-Percha
;
Mandible*
4.Reference line for computed tomogram of the mandible.
Korean Journal of Oral and Maxillofacial Radiology 2002;32(3):153-157
PURPOSE: This study was performed to determine the proper reference line for taking axial computed tomograms from which the good cross-sectional views can be reformatted by multiplanar reconstruction. METHODS: Three dry mandibles with implanted gutta percha cones in the extracted socket were scanned axially according to 6 reference lines of 2 mandibular positions with computed tomogram Hitachi W550. The accuracy of measurements of the lengths of implanted gutta percha cones in the each cross-sectional view reformatted from axial computed tomogram by multiplanar reconstruction was evaluated. RESULTS: The difference between the measurements and the real length of implant was smallest in the bucco-lingual views reformatted from the axial views scanned according to the reference line of group V-a. The smaller the angle difference between reference line and occlusal line was, the smaller the difference between the measurements in the bucco-lingual views reformatted from axial views and the real length of implant. The majority of measured widths of implants in the bucco-lingually reformatted views were larger than the actual values. CONCLUSIONS: When the mandible is inclined within the limitation of gantry angle and scanned with the reference line coincident with occlusal plane, the bucco-lingual view can be reformatted without deformation of images from the axially scanned images.
Dental Occlusion
;
Gutta-Percha
;
Mandible*
5.Sealing ability of root canals obturated with gutta-percha, epoxy resin-based sealer, and dentin adhesives.
Hee Jung KIM ; Seung Ho BAEK ; Kwang Shik BAE
Journal of Korean Academy of Conservative Dentistry 2004;29(1):51-57
No abstract available.
Adhesives*
;
Dental Pulp Cavity*
;
Dentin*
;
Gutta-Percha*
6.Comparison of warm gutta-percha condensation techniques in ribbon shaped canal: weight of filled gutta-percha.
Hyun Hee KIM ; Kyung Mo CHO ; Jin Woo KIM
Journal of Korean Academy of Conservative Dentistry 2002;27(3):277-283
The purpose of this study is to evaluate the two warm gutta-percha filling techniques by measuring the weight changes of resin blocks before and after canal filling in ribbon shaped canal. Simulated ribbon shaped root canals in 30 transparent resin blocks were instrumented to #40 using .06 taper Profile. 15 resin blocks were obturated with gutta-percha using cold lateral condensation. Warm lateral condensation using the Endotec II was then accomplished on the same 15 blocks. Another 15 resin blocks were obturated using the System B. All canals were obturated without sealer. The resin blocks were weighed after canal preparation and after each subsequent obturation, and then weight changes of the resin blocks were calculated. The results were as follows. 1. Warm lateral condensation using Endotec II and continuous wave of condensation using System B produced a denser obturation of gutta-percha compared with conventional cold lateral condensation (p<0.01). 2. There was no significant difference between warm lateral condensation and continuous wave condensation. In conclusion, the warm gutta-percha condensation techniques like warm lateral condensation and continuous wave condensation can be expected to bring favorable canal obturation results in ribbon shaped canals.
Cold Temperature
;
Dental Pulp Cavity
;
Gutta-Percha
7.Flow properties of thermoplasticized Gutta Percha obturation materials
Myong Hyun BAEK ; Bu Seok SONG ; Eun Mi CHOI
Korean Journal of Dental Materials 2018;45(4):311-320
The purpose of this study is to evaluate the flow ability of the thermoplasticized Gutta Percha in different temperatures. Four Gutta Percha products were classified by its hardness (soft, medium, and hard) and were experimented by the Rheometer (Melt flow indexer MFI-10, DAVENPORT, England) measuring apparatus, in (23 ± 2) ℃, and in a relative humidity of (50 ± 5) %, following the guidelines of ISO 1133-1:2011. The heating temperature ranged from 108℃, 160℃ to 200℃, and the load at 2.16 kg and 3.8 kg. The Gutta Percha was cut in 5 mm to be suitable for the rheometer pressurization process. After the experiment was conducted with a preheating time of 5 minutes, a cutting time of 5–240 seconds, and a sample of 10 grams, the Gutta Percha did not show any changes in fluidity for 108℃, 160℃, but showed a change in its flow ability in 200℃. Also, the Gutta Percha did not show any changes in its fluidity when it was pressurized by 2.16 and 3.8 kilograms. Therefore, this experiment shows that the heating temperature and the cut-off time showed a significance while measuring the melt flow rate.
Gutta-Percha
;
Hardness
;
Heating
;
Hot Temperature
;
Humidity
8.Microleakage of resilon: Effects of several self-etching primer.
Jong Hyeon O ; Se Hee PARK ; Hye Jin SHIN ; Kyung Mo CHO ; Jin Woo KIM
Journal of Korean Academy of Conservative Dentistry 2008;33(2):133-140
The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by several self-etching primers and methacrylate-based root canal sealer. Seventy single-rooted human teeth were used in this study. The canals were instrumented by a crown-down manner with Gate-Glidden drills and .04 Taper Profile to ISO #40. The teeth were randomly divided into four experimental groups of 15 teeth each according to root canal filling material and self-etching primers and two control groups (positive and negative) of 5 teeth each as follows: group 1 - gutta percha and AH26(R) sealer; group 2 - Resilon, RealSeal(TM) primer and RealSeal(TM) sealer; group 3 - Resilon, Clearfil SE Bond(R) primer and RealSeal(TM) sealer group 4 - Resilon, AdheSe(R) primer and RealSeal(TM) sealer. Apical leakage was measured by a maximum length of linear dye penetration of roots sectioned longitudinally by diamond disk. Statistical analysis was performed using the One-way ANOVA followed by Scheffe's test. There were no statistical differences in the mean apical dye penetration among the groups 2, 3 and 4 of self-etching primers. And group 1, 2 and 3 had also no statistical difference in apical dye penetration. But, there was statistical difference between group 1 and 4 (p < 0.05). The group 1 showed the least dye penetration. According to the results of this study, Resilon with self-etching primer was not sealed root canal better than gutta precha with AH26(R) at sealing root canals. And there was no significant difference in apical leakage among the three self-etching primers.
Dental Pulp Cavity
;
Diamond
;
Gutta-Percha
;
Humans
;
Mandrillus
;
Tooth
9.Bacteriologic in vitro coronal leakage study of before and after post space preparation.
Journal of Korean Academy of Conservative Dentistry 2005;30(1):16-21
The purpose of present study was to compare the speed of coronal leakage before and after post space preparation using Streptococcus mutans. Forty straight extracted human teeth were selected. The crowns were removed to a uniform remaining root length 14 mm. Canals were enlarged by 06 taper Profiles(R) to a size #40 as a master apical file. And these were filled with gutta percha point and Tubuliseal(R) sealer, using continuous wave technique. Groupings are as follows. Group 1 - These teeth were obturated without sealer. Group 2 - These teeth were obturated and covered the surface of the root completely with sticky wax. Group 3 - These teeth were obturated. Group 4 - These teeth were obturated and prepared for post space remaining 5 mm of gutta percha. The teeth were suspended in plastic tubes. The upper chamber received the bacterial suspension everyday to simulate clinical situation. The lower chamber consisted of BHI added Andrade's indicator. All roots in the positive control group (Group 1) turned yellow within 24 h and those of negative control group (Group 2) remained red throughout the experimental period (70 days). The samples of group 3 were contaminated within an average of 27.2 days. The samples of group 4 were contaminated within an average of 15.7 days, ranging from 9 to 22 days. There was significant difference between group 3 and group 4 statistically (p < 0.05).
Bacteria
;
Crowns
;
Gutta-Percha
;
Humans
;
Plastics
;
Streptococcus mutans
;
Tooth
10.The effect of gutta-percha removal using nickel-titanium rotary instruments.
Jeong Hun JEON ; Jeong Beom MIN ; Ho Keel HWANG
Journal of Korean Academy of Conservative Dentistry 2004;29(3):212-218
The purpose of this study was to quantify the amount of remaining gutta-percha/sealer on the walls of root canals when three types of nickel-titanium rotary instruments(Profile, ProTaper and K3) and a hand instrument(Hedstrom file) used to remove these materials. The results of this study were as follows: 1. In the total time for gutta-percha removal, Profile group was the fastest and followed by K3, Protaper, Hedstrom file group. 2. In case of the evaluation of the volume of remained gutta-percha from radiograph, K3 group got the highest score and followed by Protaper, Hedstrom file, Profile group in the apical 1/3. 3. In case of the evaluation of the volume of gutta-percha remained from stereomicroscope, K3 group got the highest score and followed by Protaper, Hedstrom file, Profile group in the apical 1/3. These results showed that instrumentation using nickel-titanium rotary instrument groups was faster than that using hand instrument group. The effect of gutta-percha removal using Profile group was better than that using Protaper and K3 group in the nickel-titanium rotary instrument groups.
Dental Instruments
;
Dental Pulp Cavity
;
Gutta-Percha*
;
Hand