1.Research progress about brain-computer interface technology based on cognitive brain areas and its applications in rehabilitation.
Huilin ZHOU ; Jialin XU ; Changcheng SHI ; Guokun ZUO
Journal of Biomedical Engineering 2018;35(5):799-804
Brain-computer interface (BCI) technology enable humans to interact with external devices by decoding their brain signals. Despite it has made some significant breakthroughs in recent years, there are still many obstacles in its applications and extensions. The current used BCI control signals are generally derived from the brain areas involved in primary sensory- or motor-related processing. However, these signals only reflect a limited range of limb movement intention. Therefore, additional sources of brain signals for controlling BCI systems need to be explored. Brain signals derived from the cognitive brain areas are more intuitive and effective. These signals can be used for expand the brain signal sources as a new approach. This paper reviewed the research status of cognitive BCI based on the single brain area and multiple hybrid brain areas, and summarized its applications in the rehabilitation medicine. It's believed that cognitive BCI technologies would become a possible breakthrough for future BCI rehabilitation applications.
2.Research on assist-as-needed control strategy of wrist function-rehabilitation robot.
Jiajin WANG ; Guokun ZUO ; Jiaji ZHANG ; Changcheng SHI ; Tao SONG ; Shuai GUO
Journal of Biomedical Engineering 2020;37(1):129-135
In order to stimulate the patients' active participation in the process of robot-assisted rehabilitation training of stroke patients, the rehabilitation robots should provide assistant torque to patients according to their rehabilitation needs. This paper proposed an assist-as-needed control strategy for wrist rehabilitation robots. Firstly, the ability evaluation rules were formulated and the patient's ability was evaluated according to the rules. Then the controller was designed. Based on the evaluation results, the controller can calculate the assistant torque needed by the patient to complete the rehabilitation training task and send commands to motor. Finally, the motor is controlled to output the commanded value, which assists the patient to complete the rehabilitation training task. The control strategy was implemented to the wrist function rehabilitation robot, which could achieve the training effect of assist-as-needed and could avoid the surge of assistance torque. In addition, therapists can adjust multiple parameters in the ability evaluation rules online to customize the difficulty of tasks for patients with different rehabilitation status. The method proposed in this paper does not rely on the information from force sensor, which reduces development costs and is easy to implement.