1.Construction of a Prognostic Model for Lysosome-dependent Cell Death in Gastric Cancer Based on Single-cell RNA-seq and Bulk RNA-seq Data.
Peng NI ; Kai Xin GUO ; Tian Yi LIANG ; Xin Shuang FAN ; Yan Qiao HUA ; Yang Ye GAO ; Shuai Yin CHEN ; Guang Cai DUAN ; Rong Guang ZHANG
Biomedical and Environmental Sciences 2025;38(4):416-432
OBJECTIVE:
To identify prognostic genes associated with lysosome-dependent cell death (LDCD) in patients with gastric cancer (GC).
METHODS:
Differentially expressed genes (DEGs) were identified using The Cancer Genome Atlas - Stomach Adenocarcinoma. Weighted gene co-expression network analysis was performed to identify the key module genes associated with LDCD score. Candidate genes were identified by DEGs and key module genes. Univariate Cox regression analysis, and least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were performed for the selection of prognostic genes, and risk module was established. Subsequently, key cells were identified in the single-cell dataset (GSE183904), and prognostic gene expression was analyzed. Cell proliferation and migration were assessed using the Cell Counting Kit-8 assay and the wound healing assay.
RESULTS:
A total of 4,465 DEGs, 95 candidate genes, and 4 prognostic genes, including C19orf59, BATF2, TNFAIP2, and TNFSF18, were identified in the analysis. Receiver operating characteristic curves indicated the excellent predictive power of the risk model. Three key cell types (B cells, chief cells, and endothelial/pericyte cells) were identified in the GSE183904 dataset. C19orf59 and TNFAIP2 exhibited predominant expression in macrophage species, whereas TNFAIP2 evolved over time in endothelial/pericyte cells and chief cells. Functional experiments confirmed that interfering with C19orf59 inhibited proliferation and migration in GC cells.
CONCLUSION
C19orf59, BATF2, TNFAIP2, and TNFSF18 are prognostic genes associated with LDCD in GC. Furthermore, the risk model established in this study showed robust predictive power.
Stomach Neoplasms/pathology*
;
Humans
;
Prognosis
;
Lysosomes/physiology*
;
RNA-Seq
;
Cell Death
;
Single-Cell Analysis
;
Gene Expression Regulation, Neoplastic
;
Cell Proliferation
;
Single-Cell Gene Expression Analysis
2.Visualization Analysis of Artificial Intelligence Literature in Forensic Research
Yi-Ming DONG ; Chun-Mei ZHAO ; Nian-Nian CHEN ; Li LUO ; Zhan-Peng LI ; Li-Kai WANG ; Xiao-Qian LI ; Ting-Gan REN ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(1):1-14
Objective To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database,to explore research hotspots and developmen-tal trends.Methods A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the litera-ture measuring tool CiteSpace.The authors,institution,country(region),title,journal,keywords,cited references and other information of relevant literatures were analyzed.Results A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries(regions)were identi-fied,with the number of articles published showing an increasing trend year by year.Among them,the United States had the highest number of publications and China ranked the second.Academy of Forensic Science had the highest number of publications among the institutions.Forensic Science Inter-national,Journal of Forensic Sciences,International Journal of Legal Medicine ranked high in publica-tion and citation frequency.Through the analysis of keywords,it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technol-ogy for sex and age estimation,cause of death analysis,postmortem interval estimation,individual identification and so on.Conclusion It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research.Exploring the combination of advanced ar-tificial intelligence technologies with forensic research will be a hotspot and direction for future re-search.
3.Urine Metabolites Changes in Acute Myocardial Infarction Rats via Metabolomic Analysis
Nian-Nian CHEN ; Jiao-Fang YU ; Peng WU ; Li LUO ; Ya-Qin BAI ; Li-Kai WANG ; Xiao-Qian LI ; Zhan-Peng LI ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(3):227-236
Objective To screen biomarkers for forensic identification of acute myocardial infarction (AMI) by non-targeted metabolomic studies on changes of urine metabolites in rats with AMI.Methods The rat models of the sham surgery group,AMI group and hyperlipidemia+acute myocardial infarction (HAMI) group were established.Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the changes of urine metabolic spectrometry in AMI rats.Principal compo-nent analysis,partial least squares-discriminant analysis,and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites.The MetaboAnalyst database was used to analyze the metabolic pathway enrichment and access the predictive ability of differential metabolites.Results A total of 40 and 61 differential metabolites associated with AMI and HAMI were screened,respec-tively.Among them,22 metabolites were common in both rat models.These small metabolites were mainly concentrated in the niacin and nicotinamide metabolic pathways.Within the 95% confidence in-terval,the area under the curve (AUC) values of receiver operator characteristic curve for N8-acetyl-spermidine,3-methylhistamine,and thymine were greater than 0.95.Conclusion N8-acetylspermidine,3-methylhistamine,and thymine can be used as potential biomarkers for AMI diagnosis,and abnormal metabolism in niacin and nicotinamide may be the main causes of AMI.This study can provide reference for the mechanism and causes of AMI identification.
4.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
5.Two cases of neonatal Legionella pneumonia
Yin-Zhi LIU ; Rong ZHANG ; Jing-Jing XIE ; Qiong GUO ; Cai-Xia ZHAN ; Meng-Yu CHEN ; Jun-Shuai LI ; Xiao-Ming PENG
Chinese Journal of Contemporary Pediatrics 2024;26(9):986-988
Patient 1,a 12-day-old female infant,presented with fever,cough,dyspnea,and elevated infection markers,requiring respiratory support.Metagenomic next-generation sequencing(mNGS)of blood and bronchoalveolar lavage fluid revealed Legionella pneumophila(LP),leading to diagnoses of LP pneumonia and LP sepsis.The patient was treated with erythromycin for 15 days and azithromycin for 5 days,resulting in recovery and discharge.Patient 2,an 11-day-old female infant,presented with dyspnea,fever,elevated infection markers,and multiple organ dysfunction,requiring mechanical ventilation.mNGS of blood and cerebrospinal fluid indicated LP,leading to diagnoses of LP pneumonia,LP sepsis,and LP intracranial infection.The patient was treated with erythromycin for 19 days and was discharged after recovery.Neonatal LP pneumonia lacks specific clinical symptoms,and azithromycin is the preferred antimicrobial agent.The use of mNGS can provide early and definitive diagnosis for severe neonatal pneumonia of unknown origin.
6.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Investigation and analysis of airborne allergenic pollen in 4 districts and 5 counties of Hohhot City.
Hui Yu NING ; Hui Jiao CAI ; Ting Ting MA ; Chang E FAN ; Dong Dong WU ; Feng Ying GAO ; Fan KONG ; Fu Jun ZHANG ; Rong WANG ; Hui Hui GUO ; Run Lan MA ; Cai Ying ZHENG ; Bo HAO ; Hong Tian WANG ; Jun Jing ZHANG ; Luo ZHANG ; Xue Yan WANG
Chinese Journal of Preventive Medicine 2023;57(9):1364-1372
Objective: To investigate the species, concentration and seasonal trends of main airborne allergenic pollen in 4 districts and 5 counties of Hohhot City. Methods: The Department of allergy, Beijing Shijitan Hospital Affiliated to Capital Medical University conducted a cross-sectional study about monitoring the airborne allergenic pollen from August 1, 2021 to July 31, 2022 by the gravitational method in 4 districts and 5 counties of Hohhot City, which include Yuquan District, Xincheng District, Huimin District, Saihan District, Tuoketuo County, Helingeer County, Tumotezuoqi County, Wuchuan County and Qingshuihe County. Daily pollens were counted and identified by optical microscopy, and the data were analyzed. Results: The airborne allergenic pollen was collected every month all year round in 4 districts and 5 counties of Hohhot city. Through the whole year of the total quantity of pollens ranged from 24 850 to 50 154 grains per 1 000 mm2 and two peaks of pollen concentration in air were observed,which happened in spring (from March to May) and in summer and autumn (from July to September). In spring, the main pollens were tree pollens, which principally distributed in Populus pollen (18.29%), Ulmus pollen (8.36%), Pinus pollen (6.20%), Cupressaceae pollen (5.23%), Betulaceae pollen (2.73%), Salix pollen (1.80%) and Quercus pollen (1.16%). In summer and autumn, the main pollens were weed pollens, which mainly included Artemisia pollen (42.73%), Chenopodiaceae pollen or Amaranthaceae pollen (7.46%), Poaceae pollen (2.26%), Humulus pollen or Cannabis pollen (0.60%). Conclusion: There were two peaks of main airborne allergenic pollen in 4 districts and 5 counties of Hohhot City. In the spring peak of pollen, the main airborne pollens were tree pollens. In the summer and autumn peak of pollen, the main airborne pollens were weed pollens. The Artemisia pollen was the most major airborne pollen in this area.
Humans
;
Cross-Sectional Studies
;
Pollen
;
Hospitals
9.Investigation and analysis of airborne allergenic pollen in 4 districts and 5 counties of Hohhot City.
Hui Yu NING ; Hui Jiao CAI ; Ting Ting MA ; Chang E FAN ; Dong Dong WU ; Feng Ying GAO ; Fan KONG ; Fu Jun ZHANG ; Rong WANG ; Hui Hui GUO ; Run Lan MA ; Cai Ying ZHENG ; Bo HAO ; Hong Tian WANG ; Jun Jing ZHANG ; Luo ZHANG ; Xue Yan WANG
Chinese Journal of Preventive Medicine 2023;57(9):1364-1372
Objective: To investigate the species, concentration and seasonal trends of main airborne allergenic pollen in 4 districts and 5 counties of Hohhot City. Methods: The Department of allergy, Beijing Shijitan Hospital Affiliated to Capital Medical University conducted a cross-sectional study about monitoring the airborne allergenic pollen from August 1, 2021 to July 31, 2022 by the gravitational method in 4 districts and 5 counties of Hohhot City, which include Yuquan District, Xincheng District, Huimin District, Saihan District, Tuoketuo County, Helingeer County, Tumotezuoqi County, Wuchuan County and Qingshuihe County. Daily pollens were counted and identified by optical microscopy, and the data were analyzed. Results: The airborne allergenic pollen was collected every month all year round in 4 districts and 5 counties of Hohhot city. Through the whole year of the total quantity of pollens ranged from 24 850 to 50 154 grains per 1 000 mm2 and two peaks of pollen concentration in air were observed,which happened in spring (from March to May) and in summer and autumn (from July to September). In spring, the main pollens were tree pollens, which principally distributed in Populus pollen (18.29%), Ulmus pollen (8.36%), Pinus pollen (6.20%), Cupressaceae pollen (5.23%), Betulaceae pollen (2.73%), Salix pollen (1.80%) and Quercus pollen (1.16%). In summer and autumn, the main pollens were weed pollens, which mainly included Artemisia pollen (42.73%), Chenopodiaceae pollen or Amaranthaceae pollen (7.46%), Poaceae pollen (2.26%), Humulus pollen or Cannabis pollen (0.60%). Conclusion: There were two peaks of main airborne allergenic pollen in 4 districts and 5 counties of Hohhot City. In the spring peak of pollen, the main airborne pollens were tree pollens. In the summer and autumn peak of pollen, the main airborne pollens were weed pollens. The Artemisia pollen was the most major airborne pollen in this area.
Humans
;
Cross-Sectional Studies
;
Pollen
;
Hospitals
10.Effects of high-fat diet intake on pharmacokinetics of moxifloxacin tablets in healthy Chinese volunteers
Cai-Hui GUO ; Na ZHAO ; Wen-Rong SUN ; Cong-Yang DING ; Ben SHI ; Xue SUN ; Hao-Jing SONG ; Bo QIU ; Wan-Jun BAI
The Chinese Journal of Clinical Pharmacology 2023;39(23):3444-3448
Objective To evaluate the effects of fasting and high-fat diet on the pharmacokinetics of moxifloxacin in Chinese healthy adult subjects.Methods A single-center,randomized,open,single-dose trial design was used in this study,healthy subjects were assigned to receive single dose of moxifloxacin tablets 0.4 g in either fasting or high-fat diet state,and blood samples were taken at different time points,respectively.The concentrations of moxifloxacin in plasma were determined by liquid chromatography-tandem mass spectrometry.Results The main pharmacokinetic parameters of moxifloxacin in fasting state and high-fat diet states were as follows:Cmax were(2 286.09±802.64)and(1 963.33±474.99)ng·mL-1;t1/2 were(12.32±1.42)and(13.56±1.38)h;AUC0-twere(2.70±0.51)×104 and(2.60±0.55)×104 ng·mL-1·h;AUC0-∞ were(2.88±0.54)×104 and(2.85±0.63)×104 ng·mL-1·h;tmax were 1.50 and 2.00 h.After high-fat diet,the AUC was not significantly changed,Cmax was decreased by 14.12%,and tmax was indistinctively delayed(all P>0.05).Conclusion Food had no effects on the absorption rate and degree of moxifloxacin.

Result Analysis
Print
Save
E-mail