1.Expression of bone morphogenetic proteins and their receptors in the normal adult rat spinal cord
Guixiu YUAN ; Liwen LI ; Dingquan ZOU ; Xinghua JIANG ; Yaping WANG ; Junmei XU
Journal of Central South University(Medical Sciences) 2011;36(7):662-670
Objective To observe the expression distribution of bone morphogenetic proteins (BMP) in the spinal cord of normal adult rats. Methods Expression of BMP2, BMP4, and BMP7, and their receptors BMPR Ⅰa, BMPR Ⅰb, and BMP Ⅱ were detected by immunochemistry analysis in the spinal cord of normal adult rats. Results Expression of BMPR Ia or BMPR Ib was observed in the motor neurons of the anterior horn, sensory neurons of the dorsal horn, oligodentrocytes, some microglia, and some astrocytes. Expression of receptor BMPR Ⅱ was found in the oligodentrocytes and motor neurons in the gray matter of anterior horn. It was also expressed in some glial fibrillary acidic protein (GFAP)-positive astrocytes in the white matter but not in the gray matter. BMP2 and BMP4 were not expressed in the spinal cord of normal adult rats by immunohistochemistry. BMP7 was expressed in all the APC-positive oligodentrocytes, all the NeuN-positive motor neurons in the anterior horn, and some astrocytes in the normal spinal cord. Phosphated pSmad 1/5/8 protein was expressed in all the oligodentrocytes, all the neurons, and some astrocytes, especially in the GFAP-positive astrocytes which were RC2-positive radial glia in the subventricular zone.Conclusion BMP7, BMP receptors, and phosphated pSmad 1/5/8 are expressed in many types of cells whereas BMP2 and BMP4 are not expressed in the spinal cord of normal adult rats, which suggests an important function of BMP signal pathway in the neuron and glia of spinal cord.
2.Construction of RNAi vector of dopamine D1 receptor and identification of its silencing effects.
Hui LI ; Junmei XU ; Guixiu YUAN ; Jin LI ; Zhangling CHEN
Journal of Central South University(Medical Sciences) 2013;38(6):570-575
OBJECTIVE:
To construct dopamine D1 receptor (DRD1) expression interference vectors to study the role of DRD1 in nerve cells and lay a foundation for drug development in anti-convulsion.
METHODS:
Based on DRD1 gene sequence in GenBank, 10 interfere vectors of DRD1 were designed. Liposomal was used to transfect NG-108-15 and the transfect effect was assayed by GFP. With realtime PCR and Western blot, the DRD1 expression was detected.
RESULTS:
The 10 constructed interfere vectors transfected into NG-108-15 cells by liposomal method and inhibited DRD1 mRNA and protein expression. DRD1 mRNA expression in NG-108-15 cells transfected with pGPU6-GFP-Neo-si-DRD1-5 was the lowest whereas DRD1 protein expression in NG-108-15 cells transfected with pGPU6-GFP-Neo-si-DRD1-1, -2, -6, -7 was the lowest.
CONCLUSION
DRD1 expression interference vector is successfully constructed.
Animals
;
Cell Line, Tumor
;
Genetic Vectors
;
Glioma
;
pathology
;
Hybrid Cells
;
Liposomes
;
metabolism
;
Mice
;
Neuroblastoma
;
pathology
;
RNA Interference
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
Receptors, Dopamine D1
;
genetics
;
metabolism
;
Transfection
3.Limb ischemic preconditioning reduces rabbit hepatic ischemia-reperfusion injury through inhibition the phosphorylation of proteins in the MAPK signal pathway in the late phase.
Lijun CAO ; Guixiu YUAN ; Yaping WANG ; Yetian CHANG ; Junmei XU ; Dingquan ZOU ; Lai WEI
Journal of Central South University(Medical Sciences) 2012;37(6):591-597
OBJECTIVE:
To investigate the liver protection mechanisms of MAPK signaling pathway of limb ischemia preconditioning in the late phase.
METHODS:
Thirty-six adult male New Zealand white rabbits, weighing 1.8-2.0 kg, were randomly divided equally into 3 groups: group C (sham operation), group L (liver ischemia-reperfusion 24 h after limb ischemia preconditioning), group IR (liver ischemia-reperfusion without limb ischemia preconditioning). Serum alanine transaminase (ALT) was measured during ischemia reperfusion. The tissue and cell injury of liver were examined by optical and electron microscopy. Activation of P38MAPK, P44/P42MAPK, and JNK in hepatic tissue was assessed by western blot after 30 min of reperfusion.
RESULTS:
Serum ALT and cell injury in the liver as examined by optical and electron microscopy was decreased in group L as compared with the group IR. Phosphorylation of P38MAPK, P44/ P42MAPK, and JNK were all increased significantly after 30 min of reperfusion. Phosphorylation of P38MAPK and JNK was reduced by limb ischemia pre-treatment.
CONCLUSION
Limb ischemia pre-treatment can induce the late phase of preconditioning in rabbit liver through the inhibition of the phosphorylation of P38MAPK and JNK.
Animals
;
Extremities
;
blood supply
;
Ischemic Preconditioning
;
methods
;
Liver
;
blood supply
;
MAP Kinase Signaling System
;
Male
;
Phosphorylation
;
Rabbits
;
Reperfusion Injury
;
prevention & control
;
p38 Mitogen-Activated Protein Kinases
;
chemistry
;
physiology
4.Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD+-SIRT3 pathway in rats.
Xiunan QIN ; Qin QIN ; Ke RAN ; Guixiu YUAN ; Yetian CHANG ; Yaping WANG ; Yanying XIAO
Journal of Central South University(Medical Sciences) 2022;47(8):1108-1119
OBJECTIVES:
Myocardial ischemia reperfusion injury (IRI) occurs occasionally in the process of ischemic heart disease. Sevoflurane preconditioning has an effect on attenuating IRI. Preserving the structural and functional integrity of mitochondria is the key to reduce myocardial IRI. Silent information regulator 3 (SIRT3), a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, is an important signal-regulating molecule in mitochondria. This study aims to explore the role of mitochondrial NAD+-SIRT3 pathway in attenuating myocardial IRI in rats by sevoflurane preconditioning.
METHODS:
A total of 60 male Sprague Dawley (SD) rats were randomly divided into 5 groups (n=12): A sham group (Sham group), an ischemia reperfusion group (IR group), a sevoflurane preconditioning group (Sev group, inhaled 2.5% sevoflurane for 30 min), a sevoflurane preconditioning+SIRT3 inhibitor 3-TYP group (Sev+3-TYP group, inhaled 2.5% sevoflurane for 30 min and received 5 mg/kg 3-TYP), and a 3-TYP group (5 mg/kg 3-TYP). Except for the Sham group, the IR model in the other 4 groups was established by ligating the left anterior descending coronary artery. The size of myocardial infarction was determined by double staining. Serum cardiac troponin I (cTnI) level was measured. The contents of NAD+ and ATP, the activities of mitochondrial complexes I, II, and IV, the content of MDA, the activity of SOD, and the changes of mitochondrial permeability were measured. The protein expression levels of SIRT3, SOD2, catalase (CAT), and voltage dependent anion channel 1 (VDAC1) were detected by Western blotting. The ultrastructure of myocardium was observed under transmission electron microscope. MAP and HR were recorded immediately before ischemia (T0), 30 min after ischemia (T1), 30 min after reperfusion (T2), 60 min after reperfusion (T3), and 120 min after reperfusion (T4).
RESULTS:
After ischemia reperfusion, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased (both P<0.01), and an obvious myocardial injury occurred, including the increase of myocardial infarction size and serum cTnI level (both P<0.01). Correspondingly, the mitochondria also showed obvious damage on energy metabolism, antioxidant function, and structural integrity, which was manifested as: the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level and mitochondrial permeability were increased (all P<0.01). Compared with the IR group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were increased in the Sev group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were decreased in the Sev group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were increased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were decreased in the Sev group (all P<0.01). Compared with the Sev group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased in the Sev+3-TYP group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were increased in the Sev+3-TYP group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were increased in the Sev+3-TYP group (all P<0.01).
CONCLUSIONS
Sevoflurane preconditioning attenuates myocardial IRI through activating the mitochondrial NAD+-SIRT3 pathway to preserve the mitochondrial function.
Adenosine Triphosphate/metabolism*
;
Animals
;
Male
;
Mitochondria/metabolism*
;
Myocardial Infarction/metabolism*
;
Myocardial Reperfusion Injury/metabolism*
;
NAD/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sevoflurane/metabolism*
;
Sirtuin 3/metabolism*
;
Voltage-Dependent Anion Channel 1/metabolism*