1. Predictive value of prostate biopsy results based on predictive model established by the PI-RADS version 2
Jinyang LUO ; Jiaxin ZHENG ; Zonglong CAI ; Xiongbo YAO ; Jiaxin CHEN ; Jiecheng ZHANG ; Rui WAN ; Guishuang LIANG ; Jinchun XING ; Xuan ZHUANG
Chinese Journal of Urology 2019;40(9):673-679
Objective:
To explore a predictive nomogram for the result of prostate biopsy based on Prostate Imaging Reporting and Data System version 2(PI-RADS v2)combined with prostate specific antigen (PSA) and its related parameters, and to assess its ability to diagnose prostate cancer by internal validation.
Methods:
We retrospectively analyzed the clinical data of 509 patients who underwent transrectal prostate biopsy guided by ultrasound during the period from January 2014 to December 2018 in the Department of Urology, First Affiliated Hospital of Xiamen University. In 509 cases, the mean age was (68.1±7.2) years. The mean prostate volume(PV) was (55.8±30.7) ml. The mean tPSA value was (19.86±18.94) ng/ml. The mean value of fPSA was (2.63±3.60) ng/ml and the mean f/tPSA was 0.14±0.08. The mean PSAD was (0.46±0.52) ng/ml2. Based on the PI-RADS v2, score 1 point have 37 cases, score 2 point have 131 cases, score 3 point have 152 cases, score 4 point have 102 cases, score 5 point have 87 cases. Of these patients, we randomly selected 80% (407 cases) as development group, and the other 20% (102 cases) as validation group. Univariate and multivariate logistic regression analysis of the development group was performed to identify the independent influence factors that can predict prostate cancer (PCa), thereby establishing a predictive model for the result of prostate biopsy. In the development group, validation group and tPSA was between 4.1-20.0 ng/ml, the model was evaluated by analyzing the receiver operating characteristic (ROC) curve, calibration curve and decision curve, and compared to PSA, fPSA, f/tPSA, PSAD, PI-RADS v2.
Results:
Among the 509 patients enrolled in the study, the detection rate of PCa was 43.0% (219/509). In the development group, the logistic regression analysis demonstrated that patient age (