1.Advances in the study of the correlation between urolithiasis and non-alcoholic fatty liver disease
Shengqi ZHENG ; Guicao YIN ; Lingyu LI ; Xiang PAN ; Xiaoxiang WANG ; Yifan LI
Chinese Journal of Urology 2023;44(2):157-160
In recent years, researchers have found that patients with nonalcoholic fatty liver disease (NAFLD) often have urolithiasis, and the incidence of urolithiasis increases gradually with the severity of NAFLD. Meanwhile, the detection rate of NAFLD was higher in patients with urolithiasis than in normal controls. In this paper, we reviewed the domestic and international studies on the correlation between urolithiasis and NAFLD and described the related pathogenesis, such as insulin resistance, oxidative stress, abnormal lipid metabolism and impaired glyoxalate detoxification. Meanwhile, this paper proposed preventive measures to reduce the risk of development and recurrence of NAFLD-associated urolithiasis by addressing the common risk factors of both diseases, including metabolism-related diseases, lifestyle and diet.
2.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
3.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
4.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
5.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
6.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
7.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
8.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
9.Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis
Guicao YIN ; Shengqi ZHENG ; Wei ZHANG ; Xin DONG ; Lezhong QI ; Yifan LI
Journal of Zhejiang University. Medical sciences 2024;53(1):47-57
Objective:To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer.Methods:The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas(TCGA)database.Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells.The classification of breast cancer patients was achieved by unsupervised clustering,and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed.The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis(WGCNA),and the key genes in the modules were identified.A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified.Results:B cells,mast cells,neutrophils,T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer.The patients were clustered into two groups(Cluster 1′ and Custer 2)based on immune cell infiltration scores.Compared with patients with Cluster 1′,patients with Cluster 2 were more likely to benefit from immunotherapy(P<0.05),and patients with Cluster 2 were more sensitive to Enbeaten,Docetaxel,Cyclopamine,and Akadixin(P<0.05).35 genes related to key immune cells were screened out by WGCNA and 4 genes(GPR171,HOXB3,HOXB5 and HOXB6)related to the prognosis of bladder cancer were further screened by LASSO Cox regression.The areas under the ROC curve(AUC)of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-,3-and 5-year survival of patients were 0.735,0.765 and 0.799,respectively.The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-,3-,and 5-year overall survival of bladder cancer patients.Conclusions:According to the immune cell infiltration score,bladder cancer patients can be classified.Furthermore,bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
10.Association between the triglyceride-glucose index and the incidence of nephrolithiasis in male individuals
Shengqi ZHENG ; Tianchi HUA ; Guicao YIN ; Wei ZHANG ; Ye YAO ; Yifan LI
Journal of Peking University(Health Sciences) 2024;56(4):610-616
Objective:To analyze the association between the triglyceride-glucose(TyG)index and the risk of nephrolithiasis across various demographic and clinical subgroups,aiming to enhance early di-agnosis and treatment of nephrolithiasis and promote personalized care in diverse populations.Methods:This cross-sectional study analyzed the medical records of 84 968 adults,stratified into three categories(low,middle,high)according to their TyG index scores.To evaluate the association between the TyG index and nephrolithiasis risk,multivariable Logistic regression models were employed,adjusting for po-tential confounders.Additionally,piecewise linear regression models were used to investigate the non-linear dynamics of the TyG index's relationship with nephrolithiasis risk.Subgroup analyses were per-formed to explore variations in the effects of the TyG index across different demographic and clinical populations.Results:Increasing TyG index was associated with a higher risk of nephrolithiasis,rising from 4.36%in the low group to 8.96%in the high group(P<0.001).In adjusted models,males in the middle and high TyG index categories demonstrated significantly elevated risks of nephrolithiasis,with odds ratios of 1.18(95%CI:1.07-1.31,P=0.002)and 1.29(95%CI:1.15-1.45,P<0.001),respectively.Conversely,in females,the association was not statistically significant post-adjustment(OR=0.98,95%CI:0.82-1.16,P=0.778).Among males,for each unit increment in the TyG index be-low the critical threshold of 8.98,there was a notable 40%escalation in the risk of developing nephroli-thiasis(OR=1.40,95%CI:1.24-1.58,P<0.001).Surpassing this threshold,the TyG index no longer conferred a significant increase in risk(OR=0.91,95%CI:0.78-1.06,P=0.24).Subgroup analyses indicated that this association remained stable regardless of age,BMI,or hypertension status.Conclusion:The TyG index is positively associated with the risk of nephrolithiasis in males,demonstra-ting a nonlinear dose-response relationship that becomes especially pronounced at certain index levels.This biomarker could potentially serve as a valuable clinical tool for identifying males who are at a high risk of developing nephrolithiasis,thereby enabling targeted preventive strategies.Further research is urgently needed to explore the underlying mechanisms and to verify the applicability of these results across different populations.