1.Chemical constituents of Sophorae Flavescentis Radix and its residue based on UPLC-Q-TOF-MS.
Qian-Wen LIU ; Rong-Qing ZHU ; Qian-Nan HU ; Xiang LI ; Guang YANG ; Zi-Dong QIU ; Zhi-Lai ZHAN ; Tie-Gui NAN ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2025;50(3):708-718
Sophorae Flavescentis Radix is one of the commonly used traditional Chinese medicine in China, and a large amount of pharmaceutical residue generated during its processing and production is discarded as waste, which not only wastes resources but also pollutes the environment. Therefore, elucidating the chemical composition of the residue of Sophorae Flavescentis Radix and the differences between the residue and Sophorae Flavescentis Radix itself is of great significance for the comprehensive utilization of the residue. This study, based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) technology combined with multivariate statistical methods, provides a thorough characterization, identification, and differential analysis of the overall components of Sophorae Flavescentis Radix and its residue. Firstly, 61 compounds in Sophorae Flavescentis Radix were rapidly identified based on their precise molecular weight, fragment ions, and compound abundance, using a self-constructed compound database. Among them, 41 compounds were found in the residue, mainly alkaloids and flavonoids. Secondly, through principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA), 15 key compounds differentiating Sophorae Flavescentis Radix from its residue were identified. These included highly polar alkaloids, such as oxymatrine and oxysophocarpine, which showed significantly reduced content in the residue, and less polar flavonoids, such as kurarinone and kuraridin, which were more abundant in the residue. In summary, this paper clarifies the overall composition, structure, and content differences between Sophorae Flavescentis Radix and its residue, suggesting that the residue of Sophorae Flavescentis Radix can be used as a raw material for the extraction of its high-activity components, with promising potential for development and application in cosmetics and daily care. This research provides a scientific basis for the future comprehensive utilization of Sophorae Flavescentis Radix and its residue.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry/methods*
;
Sophora/chemistry*
;
Flavonoids/chemistry*
;
Alkaloids/chemistry*
2.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
3.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
4.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
5.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
6.Case Analysis of MYH9 Related Disease with Non-Hodgkin Lymphoma Caused by Rare Mutations.
Xue-Ting KONG ; Dan-Yu WANG ; Ze-Lin LIU ; Zhao-Gui ZHOU ; Nan ZHONG ; Lei LIU ; Meng-Di JIN ; Hai-Yan CUI
Journal of Experimental Hematology 2025;33(4):1145-1149
OBJECTIVE:
To analyze the MYH9 gene sequence of a patient with hereditary thrombocytopenia and diffuse large B-cell lymphoma and his family members, and to explore the relationship between MYH9 gene and tumors.
METHODS:
Peripheral blood samples were collected from the patients and their family members for complete blood count analysis. The platelet morphology was observed under microscope. The MYH9 gene sequence was analyzed by Whole Exon Sequencing and Sanger Sequencing.
RESULTS:
The mutation site c.279C>A:p.(Asn93Lys) in exon 2 of the MYH9 gene were found in patient and his family members, both presenting as thrombocytopenia. The platelet count was significantly increased after the administration of Avatrombopag.
CONCLUSION
A novel mutation of MYH9 was found in this study, and the case was sensitive to Avatrombopag, by exploring the relationship between the MYH9 gene and tumors, suggesting that the MYH9 gene may be associated with the development of diffuse large B-cell lymphoma.
Humans
;
Myosin Heavy Chains/genetics*
;
Thrombocytopenia/genetics*
;
Mutation
;
Male
;
Lymphoma, Non-Hodgkin/genetics*
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Molecular Motor Proteins/genetics*
;
Pedigree
8.The RNA binding protein QKI can promote gastric cancer by regulating cleavage of EMT-related gene transcripts to form circRNAs
Yi-Shuang CUI ; Xuan ZHENG ; Ya-Nan WU ; Yi-Han YAO ; Jun WANG ; Zi-Qing LIU ; Guo-Gui SUN
Chinese Pharmacological Bulletin 2024;40(8):1462-1473
Aim To study the proliferation,invasion and migration ability of Quaking(QKI)in gastric cancer(GC)via elucidating the molecular mechanisms associated with QKI in the occurrence and development of GC through bioinformatics.Methods Differential expression analysis of QKI was performed across vari-ous human cancer samples by merging data from the TCGA and GTEx databases.The correlation was ana-lyzed between QKI protein expression and tumor muta-tion burden(TMB)score,microsatellite instability(MSI)score,and ESTIMATE score,and the correla-tion was also explored between QKI protein expression and overall survival(OS),disease free survival(DFS),and progression free survival(PFS).EMT related genes that could encode DECircRNAs were ob-tained through bioinformatics analysis to construct a QKI-EMT-circRNAs regulatory network.The differenti-ally expressed circRNAs and EMT related genes in TMK1 cells were verified.The proliferation,invasion and migration ability of the QKI was studied by using the knockdown system.Results QKI was differential-ly expressed in the vast majority of tumors and was closely related to TMB,MSI,and tumor microenviron-ment(TME);QKI emerged as a high-risk factor for predicting OS,DFS,and PFS in individuals with com-mon human cancers.QKI regulated the splicing of 6 EMT related gene transcripts to form eight circRNAs,all of which were significantly associated with the prog-nosis of gastric cancer patients.Cell experiments showed that compared to normal gastric epithelial cells,only hsa_ccirc_0004015,CALD1,and CDK14 were down-regulated in TMK1 cells.Knocking down QKI inhibited the proliferation,invasion and migration ability of TMK1 cells.Conclusion QKI exerts regu-latory control over the transcription of six EMT-related genes,resulting in the formation of circRNAs,thereby promoting the pathogenesis and progression of GC.QKI is highly expressed in TMK1 cells,and knock-down of QKI can inhibit the proliferation,invasion and migration ability of TMK1 cells.
9.Explanation and interpretation of the compilation of neonatal blood transfusion in the national health standard "Guideline for pediatric transfusion".
Rong GUI ; Rong HUANG ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Xin-Yin WU ; Ming-Yan HEI ; Qing-Nan HE
Chinese Journal of Contemporary Pediatrics 2024;26(12):1249-1254
In order to guide clinical blood transfusion practices for pediatric patients, the National Health Commission has released the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Considering the physiological particularities of the neonatal period, blood transfusion practices for neonates are more complex than those for other children, the guidelines include a separate chapter dedicated to neonatal blood transfusion. This paper interprets the background and evidence for the compilation of the neonatal blood transfusion provisions, hoping to aid in the understanding and implementation of the neonatal blood transfusion section of the guidelines.
Humans
;
Infant, Newborn
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
10.Development and validation of reverse phase-high performance liquid chromatography for determination of residual N-hydroxy succinimide content in semaglutide
YANG Qing ; MA Lu⁃nan ; LIU Zhong ; ZHANG Gui⁃min
Chinese Journal of Biologicals 2023;36(1):90-93
Abstract: Objective To develop and validate a reverse phase⁃high performance liquid chromatography(RP⁃HPLC)
method for determination of residual N⁃hydroxy succinimide(NHS)content in semaglutide. Methods A RP⁃HPLC
method was developed based on the screening of chromatographic column and optimization of mobile phase(phosphate
concentration and the ratio of acetonitrile),validated for specificity,suitability,accuracy,reproducibility and stability,
and determined for linear range,limit of quantitation(LOQ)and limit of detection(LOD). The NHS contents in three
batches of semaglutide were determined by the developed method. Results The optimal condition for RP⁃HPLC was as
follows:CAPCELL PAK ADME column(4. 6 mm × 150 mm,3 μm)was adopted,serving 0. 05 mol/L potassium dihy⁃
drogen phosphate solution⁃acetonitrile(98∶2)as mobile phase A,and 70% acetonitrile as mobile phase B with gradient
elution(0 min,0% B;10 min,0% B;19 min,90% B;19. 1 min,0% B;25 min,0% B)at a flow rate of 0. 8 mL/min.
The detection wave length was set at 260 nm,while the column temperature was 30 ℃. The developed method showed good
specificity and systemic suitability,of which the linear range was 0. 2 ~ 3. 0 μg/mL(R2 = 1. 000 0),while the LOD and
LOQ were 4. 8 and 9. 6 ng respectively. The RSD of recovery rates of NHS samples at three concentrations was 0. 58%,
indicating a high accuracy. The RSD of NHS contents in six test samples was 0. 16%,indicating a high reproducibility. The
RSD of peak areas of NHS after storage at room temperature for 0,4,8,12,16,20 and 24 h was 0. 34%,indicating
a high stability. No NHS was detected in three batches of semaglutide by the developed method. Conclusion The developed
RP⁃HPLC method is simple and sensitive,which may be used for the determination of NHS content in semaglutide.


Result Analysis
Print
Save
E-mail