1.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
2.Therapeutic Effect of Wenweishu Granules on Functional Dyspepsia Rats with Spleen-stomach Deficiency Cold Syndrome Based on Bioinformatics Analysis and Experimental Validation
Xinyu YANG ; Xiaoyi JIA ; Zihua XUAN ; Shuangying GUI ; Yanfang WU ; Yuhan MA ; Qin RUAN ; Jia ZHENG ; Zhiyong JIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):30-40
ObjectiveThis study aims to investigate the therapeutic effects of Wenweishu granule (WWSG) on functional dyspepsia (FD) with spleen-stomach deficiency cold syndrome in rats by integrating network pharmacology, molecular docking, and animal experiments. MethodsActive components and corresponding targets of WWSG were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Disease-related targets for FD with spleen-stomach deficiency cold syndrome were screened using GeneCards and the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Core therapeutic targets were identified via Cytoscape and validated by molecular docking. A rat model of FD with spleen-stomach deficiency cold syndrome was established using vinegar gavage combined with tail-clamping. The rats were randomly divided into a model group, low-, medium-, and high-dose WWSG groups (2.0, 4.0, 8.0 g·kg-1), a domperidone group (3.0 mg·kg-1), a Fuzi Lizhong pillwan (0.8 g·kg-1), and a normal control group (n=10 per group). Drugs were administered once daily by gavage for 14 consecutive days. After treatment, body weight, symptom scores, and gastrointestinal motility indices were recorded. Gastric and duodenal pathologies changes were observed via hematoxylin-eosin (HE) staining. Brain-gut peptides were measured in serum and tissue using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and Western blot were performed to assess stem cell factor (SCF) and receptor tyrosine kinase (c-Kit) protein expression in gastric tissues. ResultsA total of 305 drug targets, 1 140 disease targets, and 116 overlapping targets were identified. Cytoscape analysis revealed 104 core targets. Enrichment analysis indicated that the SCF/c-Kit signaling pathway was the key mechanism. Molecular docking confirmed a strong binding affinity between active components of WWSG and SCF/c-Kit proteins (binding energy<-5.1 kcal·mol-1). Compared with the normal group, model rats exhibited slower weight gain (P<0.05), reduced gastric emptying and intestinal propulsion (P<0.01), mild gastric mucosal shedding, duodenal inflammatory cell infiltration, decreased levels of gastrin (GAS), 5-hydroxytryptamine (5-HT), and vasoactive intestinal peptide (VIP) (P<0.05, P<0.01), and elevated somatostatin (SS) expression (P<0.05, P<0.01). WWSG treatment ameliorated weight gain, symptom scores, and low-grade inflammation in gastric/duodenal tissues. High-dose WWSG significantly improved gastric emptying and intestinal propulsion, upregulated GAS, 5-HT, and VIP, and downregulated SS expression in serum and tissues (P<0.05, P<0.01). Immunohistochemistry and Western blot demonstrated that SCF and c-Kit protein expression was decreased in the model group (P<0.05, P<0.01), which was reversed by WWSG intervention (P<0.05). ConclusionWWSG exerts therapeutic effects on FD with spleen-stomach deficiency cold syndrome in rats, potentially by regulating the SCF/c-Kit signaling pathway to enhance gastrointestinal motility.
3.Off-the-shelf human umbilical cord mesenchymal stromal cell product in acute-on-chronic liver failure: A multicenter phase I/II clinical trial.
Lina CUI ; Huaibin ZOU ; Shaoli YOU ; Changcun GUO ; Jundong GU ; Yulong SHANG ; Gui JIA ; Linhua ZHENG ; Juan DENG ; Xiufang WANG ; Ruiqing SUN ; Dawei DING ; Weijie WANG ; Xia ZHOU ; Guanya GUO ; Yansheng LIU ; Zhongchao HAN ; Zhibo HAN ; Yu CHEN ; Ying HAN
Chinese Medical Journal 2025;138(18):2347-2349
4.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
5.Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.
Yifan XIAO ; Liyan HAO ; Xinyi CAO ; Yibo ZHANG ; Qingqing XU ; Luyao QIN ; Yixuan ZHANG ; Yangxingzi WU ; Hongyan ZHOU ; Mengjuan WU ; Mingshan PI ; Qi XIONG ; Youhua YANG ; Yuran GUI ; Wei LIU ; Fang ZHENG ; Xiji SHU ; Yiyuan XIA
Neuroscience Bulletin 2025;41(7):1181-1197
High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.
Animals
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Astrocytes/metabolism*
;
Interleukin-33/metabolism*
;
HMGB1 Protein/metabolism*
;
Acetylation
;
Mice, Knockout
;
Mice, Inbred C57BL
;
p300-CBP Transcription Factors/metabolism*
;
Mice
;
Spinal Cord/metabolism*
;
Cells, Cultured
;
Female
;
Signal Transduction
6.Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach.
Xia SHENG ; Yike GUI ; Jie YU ; Yitian WANG ; Zhenghao LI ; Xiaoya ZHANG ; Yuxin XING ; Yuqing WANG ; Zhaojun LI ; Mingyue ZHENG ; Liquan YANG ; Xutong LI
Journal of Pharmaceutical Analysis 2025;15(8):101337-101337
Kirsten rat sarcoma viral oncogene homolog (KRAS) protein inhibitors are a promising class of therapeutics, but research on molecules that effectively penetrate the blood-brain barrier (BBB) remains limited, which is crucial for treating central nervous system (CNS) malignancies. Although molecular generation models have recently advanced drug discovery, they often overlook the complexity of biological and chemical factors, leaving room for improvement. In this study, we present a structure-constrained molecular generation workflow designed to optimize lead compounds for both drug efficacy and drug absorption properties. Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization. This method specifically aims to enhance BBB permeability (BBBp) while maintaining high-affinity substructures of KRAS inhibitors. To support this, we incorporate a specialized KRAS BBB predictor based on active learning and an affinity predictor employing comparative learning models. Additionally, we introduce two novel metrics, the knowledge-integrated reproduction score (KIRS) and the composite diversity score (CDS), to assess structural performance and biological relevance. Retrospective validation with KRAS inhibitors, AMG510 and MRTX849, demonstrates the framework's effectiveness in optimizing BBBp and highlights its potential for real-world drug development applications. This study provides a robust framework for accelerating the structural enhancement of lead compounds, advancing the drug development process across diverse targets.
7.International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025).
Sheng-Sheng ZHANG ; Lu-Qing ZHAO ; Xiao-Hua HOU ; Zhao-Xiang BIAN ; Jian-Hua ZHENG ; Hai-He TIAN ; Guan-Hu YANG ; Won-Sook HONG ; Yu-Ying HE ; Li LIU ; Hong SHEN ; Yan-Ping LI ; Sheng XIE ; Jin SHU ; Bin-Fang ZENG ; Jun-Xiang LI ; Zhen LIU ; Zheng-Hua XIAO ; Jing-Dong XIAO ; Pei-Yong ZHENG ; Shao-Gang HUANG ; Sheng-Liang CHEN ; Gui-Jun FEI
Journal of Integrative Medicine 2025;23(5):502-518
Functional dyspepsia (FD), characterized by persistent or recurrent dyspeptic symptoms without identifiable organic, systemic or metabolic causes, is an increasingly recognized global health issue. The objective of this guideline is to equip clinicians and nursing professionals with evidence-based strategies for the management and treatment of adult patients with FD using traditional Chinese medicine (TCM). The Guideline Development Group consulted existing TCM consensus documents on FD and convened a panel of 35 clinicians to generate initial clinical queries. To address these queries, a systematic literature search was conducted across PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine (SinoMed) Database, Wanfang Database, Traditional Medicine Research Data Expanded (TMRDE), and the Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS). The evidence from the literature was critically appraised using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The strength of the recommendations was ascertained through a consensus-building process involving TCM and allopathic medicine experts, methodologists, pharmacologists, nursing specialists, and health economists, leveraging their collective expertise and empirical knowledge. The guideline comprises a total of 43 evidence-informed recommendations that span a range of clinical aspects, including the pathogenesis according to TCM, diagnostic approaches, therapeutic interventions, efficacy assessments, and prognostic considerations. Please cite this article as: Zhang SS, Zhao LQ, Hou XH, Bian ZX, Zheng JH, Tian HH, Yang GH, Hong WS, He YY, Liu L, Shen H, Li YP, Xie S, Shu J, Zeng BF, Li JX, Liu Z, Xiao ZH, Xiao JD, Zheng PY, Huang SG, Chen SL, Fei GJ. International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025). J Integr Med. 2025; 23(5):502-518.
Dyspepsia/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Practice Guidelines as Topic
;
Drugs, Chinese Herbal/therapeutic use*
8.Effect of salidroside on ischemic brain injury in rats
Qing-Qing WU ; Hui-Lin WU ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(5):873-880
Aim To study the permeability of salidro-side(Sal)to the blood brain barrier(BBB)by high-performance liquid chromatography electrospray ioniza-tion tandem mass spectrometry(UPLC-ESI-MS-MS),and to explore the target and mechanism of Sal in the treatment of ischemic stroke(IS)by network pharma-cology,molecular docking technique and animal exper-iment.Methods UPLC-ESI-MS/MS was used to study the BBB penetration of Sal.Multiple databases were used to predict the target of Sal and the disease target of IS,GO and KEGG enrichment analysis were performed and verified by molecular docking technique and animal experiments.Results After Sal adminis-tration to normal rats and MCAO rats,Sal prototype and the metabolite tyrosol were detected in plasma and brain tissue of rats.A total of 191 targets were identi-fied by network pharmacology,the enrichment analysis of GO mainly involved in the biological processes of proteolysis and positive regulation of cell migration,and the analysis of KEGG pathway suggested that PI3K-Akt,MAPK,FOXO and other signaling path-ways played a key role in the treatment of IS by Sal The results of molecular docking showed that Sal had good binding ability with the core target of docking,and the results of animal experiments showed that Sal could significantly improve the neurologic impairment of MCAO rats,the number of Nissl-positive cells in is-chemic side significantly increased,and the expression of VEGF,EGFR and IGF1 increased,while the ex-pression of IL-6 and MMP9 was inhibited.Conclu-sions Sal is able to penetrate the BBB and enter the central nervous system for its pharmacological effects.Network pharmacology predicts the core targets of Sal in the treatment of IS,including VEGFA,EGFR,IL-6,MMP9,IGF1,CASP3,ALB,SRC.The effects of Sal on some core targets can be verified by animal ex-periments,to provide a reference for further study of the mechanism of Sal in the treatment of IS.
9.Mechanism of saikosaponin D enhancing temozolomide sensitivity in glioma cells via inducing endoplasmic reticulum stress
Gui-Mei LIU ; Rui ZHENG ; Xiao-Bin LIU ; Yong-Xian LIU ; Ya-Ping WANG ; Yu-Fu ZHANG ; Jing ZHANG ; Xiao-Yan JIN ; Yu-Si LIU
Chinese Pharmacological Bulletin 2024;40(6):1105-1114
Aim To investigate the synergistic sensiti-zation effect of saikosaponin D(SSD)combined with temozolomide(TMZ)on glioblastoma cells(GBM)and its molecular mechanism.Methods The sensitiv-ity of RG-2,U251 and LN-428 GBM cell lines to SSD and TMZ was analyzed by CCK-8 method combined with HE staining,and the optimal compatible concen-tration was screened.The effect of HE staining com-bined with Hoechst fluorescence staining on the prolif-eration of GBM cell line was detected by clonal forma-tion experiment.The autophagosome formation of GBM cells was observed by monodansylcadaverine(MDC)staining.The expression and distribution of endoplas-mic reticulum stress-related factors and apoptosis and autophagy proteins were detected by Western blot and ICC.Results The sensitivity order of GBM cells to TMZ was RG-2>U251>LN-428.The results of com-bined administration showed the synergistic inhibitory effect of SSD combined with TMZ on proliferation of GBM cell lines,which was confirmed by cell cloning formation experiment.Compared with the TMZ group,Hoechst fluorescence staining showed a significant in-crease in the number of nuclear bright staining in the combined administration group.MDC fluorescence staining showed that there were more dense green parti-cles in the cytoplasm of SSD/TMZ plus group than that of TMZ group.Western blot results showed that com-pared with TMZ group,the expression of ER stress markers GRP78,CHOP,p-PERK and ATF6 signifi-cantly increased in SSD/TMZ group(P<0.05).The expressions of apoptosis proteins caspase-12,caspase-9,caspase-3,cleaved caspase-3,Bax and autophagy proteins LC3 and Beclin-1 significantly increased(P<0.05),which were verified by ICC test.Conclusions SSD can cooperate with TMZ to inhibit the prolifera-tion of GBM cells and induce apoptosis and autophagy,and enhance the sensitivity of GBM cells to TMZ by ac-tivating endoplasmic reticulum stress pathway.
10.Development of nanographene oxide as clinical drug carrier in cancer therapy
Chun-Lian ZHONG ; Chang-Jian FANG ; Gui-Yu ZHOU ; Hui-Ling ZHU ; Tang ZHENG ; Wan-Jing ZHUANG ; Jian LIU ; Yu-Sheng LU
Chinese Pharmacological Bulletin 2024;40(8):1413-1418
Immunotherapy is an important breakthrough in canc-er treatment.Unfortunately,low drug concentration in tumor sites almost ineffectively initiates immune responses and thereby severely limits immune therapy applications in clinics.Nanoma-terials are well-recognized drug delivery system in cancer thera-py.Nanographene oxide(NGO)have shown immense perti-nence for anti-cancer drug delivery owing to their ultra-high sur-face area,chemical stability,good biocompatibility and excel-lent photosensitivity.In addition,functionalized modifications on the surface of NGO increase tumor targeting and minimize cy-totoxicity.This study focuses on reviewing the literature and up-dates on NGO in drug delivery and discussing the possibilities and challenges of NGO in cancer synergetic therapy.

Result Analysis
Print
Save
E-mail