1.The nuclear 16-kD protein methylation increases in the early period of liver regeneration in a hepatectomized rat.
Kyounghwa LEE ; Kyung Mi LEE ; Tae Jin KIM ; Jong Seol HAN ; Meyoung Kon KIM ; Yoon Sik HONG ; Gil Hong PARK ; Kyo Won LEE
Experimental & Molecular Medicine 2004;36(6):563-571
Methylation events play a critical role in various cellular processes including regulation of gene transcription and proliferation. We observed that methyltransferase activity underwent time-dependent changes in the cytosol of the rat hepatocytes upon partial hepatectomy. However, any change in the methylation of nuclear proteins is not clear during hepatocyte proliferation. The nuclear fraction possesses basal level of methyltransferase to catalyze methylation of several proteins ranging from 7 to 70 kD prior to any hepatecmony. The specific p16 (16 kD) band was transiently and heavily methylated post 1 day hepatectomy, and then became non- detectable, but not in the control liver. Methylation of p16 band was completely inhibited by exogenously added histones, particularly 2AS, 1, 2A and 2B subtypes. The methylated p16 protein remains stable in either acid or alkali- induced demethylation conditions, indicating that methylation is not likely to occur on isoaspartyl or C-terminal cysteinyl residues. Exogenous addition of non-hydrolyzable GTP caused a dose- dependent suppression of a p16 methylation suggesting that G-proteins might play a role as an endogenous methylation inhibitor in vivo. Taken together, we have identified the proliferation event associated-methylation of the nuclear p16 protein in the hepatocytes undergoing liver regeneration.
Alkalies/pharmacology
;
Animals
;
Cell Proliferation
;
Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
;
Hepatectomy
;
Hepatocytes/drug effects/*metabolism
;
Histones/pharmacology
;
Liver Regeneration/drug effects/*physiology
;
Methylation/drug effects
;
Nuclear Proteins/*metabolism
;
Rats
;
Research Support, Non-U.S. Gov't
;
Sodium Chloride/pharmacology
2.Partial purification of protein farnesyl cysteine carboxyl methyltransferase from bovine brain.
Byung Cheol YOO ; Myung Seo KANG ; Sang Duk KIM ; Young Sun LEE ; Soo Yeon CHOI ; Chong Keun RYU ; Gil Hong PARK ; Jong Seol HAN
Experimental & Molecular Medicine 1998;30(4):227-234
C-terminal farnesyl cysteine carboxyl methylation has been known to be the last step in the post-translational modification processes of several important signal transduction proteins in eukaryotes including ras related GTP binding proteins and the gamma-subunit of heterotrimeric G proteins. Protein farnesyl cysteine carboxyl methyltransferase (PFCCMT; EC, 2.1.1.100) catalyzing the reaction is well characterized as being stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and suppressed by N-acetyl-S-farnesyl-L-cysteine (AFC). As an initial step to understand the physiological significance of the process, we attempted to purify the enzyme, which was partially purified 130-fold (specific activity, 143 pmol of methyl group transferred/min/mg of protein) with yield of 1.8% after purification by fast protein liquid chromatography (FPLC) on a Superdex 75 column. The enzyme was further purified with non denaturing polyacrylamide gel electrophoresis (ND-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of PFCCMT was determined to be about 30 kDa based on Superdex 75 FPLC as well as photoaffinity labelling with S-adenosyl-L-[methyl-3H] methionine ([methyl-3H]SAM). The partially purified enzyme (Superdex 75 eluate) was found to be characteristically affected by GTP gamma S, being activated about 40-fold in 2 mM, in contrast to ATP which did not show any effect on enzyme activity. Meanwhile, the enzyme was found to be markedly inhibited by AFC, reaching 0 activity in 2 mM. These observations strongly suggested that the partially purified enzyme was PFCCMT.
Acetylcysteine/pharmacology
;
Acetylcysteine/analogs & derivatives
;
Animal
;
Brain/enzymology*
;
Cattle
;
Chromatography, Liquid
;
Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
;
Molecular Weight
;
Protein Methyltransferases/isolation & purification*
;
Protein Methyltransferases/chemistry
;
Protein Processing, Post-Translational
3.The proteins of synaptic vesicle membranes are affected during ageing of rat brain.
Sae Ra LEE ; Ah Ram KIM ; Jun Sub KIM ; Jae Bonb KIM ; Jae Yong LEE ; Yun Lyul LEE ; Myeon CHOE ; Jae Bong PARK
Experimental & Molecular Medicine 2001;33(4):220-225
Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.
*Aging
;
Animal
;
Brain/metabolism
;
Calcium/pharmacology
;
Cattle
;
Comparative Study
;
GTP-Binding Proteins/*metabolism
;
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
;
Molecular Weight
;
Phosphorylation/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Synaptic Membranes/*metabolism
;
Synaptosomes/*metabolism
;
cdc42 GTP-Binding Protein/biosynthesis/metabolism
;
rab3A GTP-Binding Protein/metabolism
;
rab5 GTP-Binding Proteins/metabolism
;
rhoA GTP-Binding Protein/biosynthesis/metabolism
4.The proteins of synaptic vesicle membranes are affected during ageing of rat brain.
Sae Ra LEE ; Ah Ram KIM ; Jun Sub KIM ; Jae Bonb KIM ; Jae Yong LEE ; Yun Lyul LEE ; Myeon CHOE ; Jae Bong PARK
Experimental & Molecular Medicine 2001;33(4):220-225
Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.
*Aging
;
Animal
;
Brain/metabolism
;
Calcium/pharmacology
;
Cattle
;
Comparative Study
;
GTP-Binding Proteins/*metabolism
;
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
;
Molecular Weight
;
Phosphorylation/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Synaptic Membranes/*metabolism
;
Synaptosomes/*metabolism
;
cdc42 GTP-Binding Protein/biosynthesis/metabolism
;
rab3A GTP-Binding Protein/metabolism
;
rab5 GTP-Binding Proteins/metabolism
;
rhoA GTP-Binding Protein/biosynthesis/metabolism