Objective To improve the clinical application of using rehabilitation robot for hand rehabilitation and solve the current shortcomings of rigid hand rehabilitation robot, such as complex structure, heavy weight, potential safety hazard, a new soft and wearable robotic glove was proposed. Methods The robotic glove was driven by McKibben pneumatic artificial muscles (PAMs). The tendon drive system was designed based on simulation of human hand anatomy and physiology structure, which could transmit forces and torques through the user’s own skeleton and joints. The normal hand movement could be simulated and this design pattern highly reduced the weight of the robotic glove. Meanwhile a surface electromyogrphy (sEMG) collecting circuit was developed to acquire sEMG signals from the forearm. User intent could be detected by measuring the sEMG of flexor digitorum superficialis and extensor digitorum communis on the forearm. Results The results of the experiment investigation on characteristics of the soft robotic glove showed that the robotic glove could effectively assist people completing daily activities and grasping daily necessities. The feasibility and scientificity of the robotic glove was validated. Conclusions The soft and wearable robotic glove has an advantage of light weight, easy operation and high comfortableness, and it can provide references for the study and design of similar hand rehabilitation devices.