1.Application of ''Sensation and Response'' Theory in Syndrome Differentiation and Treatment of Lung Cancer
Ayidana MAOLAN ; Qiujun GUO ; Runzhi QI ; Rui LIU ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):261-268
Lung cancer still ranks first among malignant tumors in the world and China. Although surgery, radiotherapy, chemotherapy, and other treatments can delay patients' lives, thorny problems remain to be solved, such as adverse reactions after intervention, patient resistance to treatment, and the economic burden of treatment. Traditional Chinese medicine (TCM) featuring a holistic view advocates macro interventions throughout the entire disease cycle, which has the advantages of reducing toxicity, improving efficiency, and enhancing patients' quality of life. The theory of ''sensation and response'' was first recorded in the book of I-Ching. This is the natural law of mutual induction, influence, and interaction among all things in nature. According to the theory of ''Qi monism'' and the proposal of regulating Qi movement and removing toxin by Professor Hua Baojin, we re-examine lung cancer from the primitive thinking in TCM and explain the relevance of Qi movement changes to the occurrence, progression, and treatment of lung cancer. The core pathogeneses of lung cancer are the deficiency of healthy Qi and invasion of deficiency pathogen resulting in the formation of cancer and the internal generation of cancer toxin leading to intermediate dysfunction. Six excesses and Yin pathogen invade and gradually accumulate in the lung and spleen, leading to the generation of cancer toxin, which eventually evolve into lung cancer. The treatment can be based on the theories of five elements and visceral manifestation from three aspects. First, on the basis of syndrome differentiation, medicinal materials of different flavors can be used. Specifically, pungent medicinal materials can be used for dredging and sweet medicinal materials can be used for tonifying. Second, medicinal materials with similar morphology or origin to that in the human body can be used for treating the diseases in corresponding sites. Finally, corrigent medicinal materials can be combined for two-way regulation. These measures can be applied in lung cancer treatment to optimize the prevention and treatment strategies and provide new research directions for TCM diagnosis and treatment of tumors.
2.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
3.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
4.Treatment of depression based on the theory of " liver disease affecting to the spleen"
Siyi WANG ; Jingchun LI ; Shaozhen JI ; Shuaihang HU ; Tianle ZHENG ; Fei WANG ; Qianqi WANG ; Jiaxiu LI ; Rongjuan GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):216-222
The " liver disease affecting to the spleen" theory first appeared in Nanjing and was further elaborated in Jingui Yaolue. This theory encapsulates the traditional Chinese medicine principles of the " unity of the five viscera" and the " preventive treatment of disease" . The theory emphasizes that the spleen is the pivotal point where depression may progress from a functional disorder to an organic disease. The liver governs the emotions and qi flow, whereas the spleen is responsible for qi, blood, and body. In the early stages of the disease, emotional disorders and qi flow disorders primarily affect the liver, manifesting as depression or low mood. As the condition progresses, the liver (Wood) overacts on the spleen (Earth), disrupting liver and spleen functions and causing qi and blood disharmony. This stage is marked by fatigue and psychomotor retardation. Prolonged illness depletes qi and blood, eventually involving all five viscera, disrupting the harmony of the five spirits, and affecting both body and spirit. At this advanced phase, intense emotional distress or agitation often arises, accompanied by a heightened risk of suicide. The disease progression follows a dynamic " qi-blood-spirit" pattern, in which depression begins in the liver, characterized by qi stagnation, then affects the spleen, involving blood disharmony. In later stages, the disease eventually affects all viscera, with profound effects on both physical and mental health. Treatment strategies should align with the disease stage. Early intervention should focus on regulating the flow of qi, treating the liver, and strengthening the spleen. In the middle stages, qi and blood should be harmonized while promoting the harmonized functions of the liver and spleen. In the later stages, treatment should harmonize the five viscera to restore balance between body and spirit. Guided by this theory, integrating modern medical understanding of the progression of depression from emotional to somatic symptoms and adopting a stage-based approach to treatment in clinical practice can yield effective therapeutic outcomes for managing depression and related disorders.
5.Shenxiao Tongluo Prescription Alleviates Kidney Injury in Diabetic Rats via PGC-1α/SIRT3/HIF-1α Pathway
Cangcang XU ; Xianbing GUO ; Guang LI ; Wenhao JIAO ; Yang ZHAO ; Yingjun DING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):108-116
ObjectiveTo investigate the mechanisms of mitochondrial dynamics and metabolic reprogramming in the treatment of diabetic nephropathy (DN) by Shenxiao Tongluo prescription via the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/sirtuin-3 (SIRT3)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. MethodsSixty-five SD rats were randomized into a sham group (10 rats) and a modeling group (55 rats), and the modeling rats underwent left nephrectomy and intraperitoneal injection of streptozotocin (35 mg·kg-1) to prepare a DN model. After successful modeling, the rats were randomized into model, empagliflozin (10 mg·kg-1), and low-, medium-, and high-dose (7.656, 15.312, 30.624 g·kg-1, respectively) Shenxiao Tongluo prescription groups. The urine microalbumin (UmAlb), blood urea nitrogen (BUN), and serum creatinine (SCr) levels of rats in each group were assessed after continuous gavage for 8 weeks. The corresponding kits were used to measure the levels of lactate, superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissue. Hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff staining were performed to observe the pathological changes in the kidney tissue. Transmission electron microscopy was employed to observe mitochondrial morphology. Immunohistochemistry was employed to determine the expression levels of dynamin-related protein 1 (DRP1) and pyruvate kinase M2 (PKM2) in the kidney tissue. Western blot was adopted to assess the protein levels of PGC-1α, SIRT3, HIF-1α, dynamin-related protein 1 (Drp1), optic atrophy 1 (OPA1), hexokinase 2 (HK2), and pyruvate kinase M2 (PKM2) in the kidney tissue. ResultsCompared with the sham group, the model group showed elevated levels of UmAlb, BUN, SCr, lactate, and MDA, decreased SOD level (P<0.05), glomerular hypertrophy, thickening of the mesangial basement membrane, vacuolar degeneration of renal tubular epithelial cells, and infiltration of renal interstitial inflammatory cells, oval mitochondria with disordered, blurred or disappearing cristae, down-regulated protein levels of PGC-1α, SIRT3, and OPA1, and up-regulated protein levels of HIF-1α, DRP1, HK2, and PKM2 (P<0.05). Compared with the model group, the treatment in all the groups increased the body weight, lowered the levels of GLU, UmAlb, BUN, and MDA, raised the level of SOD, alleviated the pathological damage in the kidney tissue and mitochondrial damage, up-regulated the expression of PGC-1α, SIRT3, and OPA1, and down-regulated the expression of HIF-1α, DRP1, and PKM2 (P<0.05). Empagliflozin and Shenxiao Tongluo prescription at medium and high doses lowered the levels of SCr and lactate and down-regulated the expression of HK2 (P<0.05), which had no statistical significance in the low-dose Shenxiao Tongluo prescription group. ConclusionShenxiao Tongluo prescription may regulate mitochondrial dynamics and metabolic reprogramming by activating the PGC-1α/SIRT3/HIF-1α pathway, thereby alleviating oxidative damage in the kidney tissue and delaying the progression of DN.
6.Shenxiao Tongluo Prescription Alleviates Kidney Injury in Diabetic Rats via PGC-1α/SIRT3/HIF-1α Pathway
Cangcang XU ; Xianbing GUO ; Guang LI ; Wenhao JIAO ; Yang ZHAO ; Yingjun DING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):108-116
ObjectiveTo investigate the mechanisms of mitochondrial dynamics and metabolic reprogramming in the treatment of diabetic nephropathy (DN) by Shenxiao Tongluo prescription via the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/sirtuin-3 (SIRT3)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. MethodsSixty-five SD rats were randomized into a sham group (10 rats) and a modeling group (55 rats), and the modeling rats underwent left nephrectomy and intraperitoneal injection of streptozotocin (35 mg·kg-1) to prepare a DN model. After successful modeling, the rats were randomized into model, empagliflozin (10 mg·kg-1), and low-, medium-, and high-dose (7.656, 15.312, 30.624 g·kg-1, respectively) Shenxiao Tongluo prescription groups. The urine microalbumin (UmAlb), blood urea nitrogen (BUN), and serum creatinine (SCr) levels of rats in each group were assessed after continuous gavage for 8 weeks. The corresponding kits were used to measure the levels of lactate, superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissue. Hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff staining were performed to observe the pathological changes in the kidney tissue. Transmission electron microscopy was employed to observe mitochondrial morphology. Immunohistochemistry was employed to determine the expression levels of dynamin-related protein 1 (DRP1) and pyruvate kinase M2 (PKM2) in the kidney tissue. Western blot was adopted to assess the protein levels of PGC-1α, SIRT3, HIF-1α, dynamin-related protein 1 (Drp1), optic atrophy 1 (OPA1), hexokinase 2 (HK2), and pyruvate kinase M2 (PKM2) in the kidney tissue. ResultsCompared with the sham group, the model group showed elevated levels of UmAlb, BUN, SCr, lactate, and MDA, decreased SOD level (P<0.05), glomerular hypertrophy, thickening of the mesangial basement membrane, vacuolar degeneration of renal tubular epithelial cells, and infiltration of renal interstitial inflammatory cells, oval mitochondria with disordered, blurred or disappearing cristae, down-regulated protein levels of PGC-1α, SIRT3, and OPA1, and up-regulated protein levels of HIF-1α, DRP1, HK2, and PKM2 (P<0.05). Compared with the model group, the treatment in all the groups increased the body weight, lowered the levels of GLU, UmAlb, BUN, and MDA, raised the level of SOD, alleviated the pathological damage in the kidney tissue and mitochondrial damage, up-regulated the expression of PGC-1α, SIRT3, and OPA1, and down-regulated the expression of HIF-1α, DRP1, and PKM2 (P<0.05). Empagliflozin and Shenxiao Tongluo prescription at medium and high doses lowered the levels of SCr and lactate and down-regulated the expression of HK2 (P<0.05), which had no statistical significance in the low-dose Shenxiao Tongluo prescription group. ConclusionShenxiao Tongluo prescription may regulate mitochondrial dynamics and metabolic reprogramming by activating the PGC-1α/SIRT3/HIF-1α pathway, thereby alleviating oxidative damage in the kidney tissue and delaying the progression of DN.
7.Clinical Value of Tumor-Stroma Ratio Combined with KRAS/NRAS/BRAF Gene Status in Prognostic Assessment of Patients with Colorectal Cancer
Ziyang ZHANG ; Yuanfei LI ; Yuntong GUO ; Gen ZHU ; Guang YANG ; Yu WANG
Cancer Research on Prevention and Treatment 2025;52(8):676-681
Objective To investigate the clinical value of tumor-stroma ratio (TSR) in combination with KRAS, BRAF, NRAS, and microsatellite status for prognostic assessment of patients with colorectal cancer. Methods A total of 51 colorectal cancer cases meeting the inclusion and exclusion criteria were enrolled in this study. TSR levels were evaluated through optical microscopy. The KRAS/NRAS/BRAF mutation profiles and microsatellite status were determined in accordance with genetic testing results. Clinical data, pathological characteristics, and survival outcomes were systematically recorded. Results Among the 51 patients with colorectal cancer, 19 (37.3%) were categorized into the low stromal group and 32 (62.7%) into the high stromal group. Statistically significant differences were observed between the two groups in drug resistance, M stage, TNM stage, neural invasion, and microsatellite status (P<0.05). Compared with patients exhibiting high TSR, those with low TSR demonstrated significantly increased recurrence rates (5 vs. 21 cases, P=0.007), shortened disease-free survival (34.21 vs. 14.34 months, P=0.001), and reduced overall survival (38.79 vs. 23.09 months, P=0.021). Multivariate Cox regression analysis identified N stage, M stage, TNM stage, neural invasion, lymphovascular invasion, and TSR as independent risk factors for disease-free survival. N stage, M stage, neural invasion, lymphovascular invasion, and TSR emerged as independent prognostic factors for overall survival (P<0.05). Although the combined models of TSR with KRAS, NRAS, BRAF, and microsatellite status, respectively, demonstrated overall statistical significance (P<0.05), none of the dummy variables in these models reached individually statistical significance (P>0.05), and therefore cannot be considered independent prognostic factors. Conclusion TSR serves as an independent predictor of poor prognosis in advanced colorectal cancer, with patients exhibiting low TSR demonstrating a significantly higher risk of recurrence and metastasis than those with high TSR. For patients with colon cancer undergoing first-line palliative chemotherapy after postoperative recurrence, histopathological assessment of TSR in primary tumor sites holds prognostic value and may serve as a relevant factor for evaluating treatment resistance in clinical management.
8.Research progress on transcription factors and regulatory proteins of Salvia miltiorrhiza.
Wen XU ; Mei TIAN ; Ye SHEN ; Juan GUO ; Bao-Long JIN ; Guang-Hong CUI
China Journal of Chinese Materia Medica 2025;50(1):58-70
Salvia miltiorrhiza is a perennial herb of the genus Salvia(Lamiaceae). As one of the earliest medicinal plants to undergo molecular biology research, it has gradually become a model plant for molecular biology of medicinal plants. With the gradual analysis of the genome of S. miltiorrhiza and the biosynthetic pathways of its main active components tanshinone and salvianolic acids, the transcriptional regulation mediated by transcription factors and related regulatory proteins has gradually become a new research focus. Due to the lack of scientific and unified naming of transcription factors and different research indexes in different literature, this paper systematically sorted out the transcription factors in different literature with the genomes of DSS3 from selfing for three generations and bh2-7 from selfing for six generations as reference. In total, 73 transcription factors and related regulatory proteins belonging to 13 gene families were identified. The effects of overexpression or gene silencing experiments on tanshinone and salvianolic acids were also analyzed. This study unified the identified transcription factors, which laid a foundation for further constructing the regulatory networks of secondary metabolites and insect or stress resistance and improving the quality of medicinal materials by using global transcriptional regulation engineering.
Salvia miltiorrhiza/chemistry*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Transcription Factors/metabolism*
;
Abietanes/metabolism*
9.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
10.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical


Result Analysis
Print
Save
E-mail