1.Evidence for the Presence of Long-Lived Plasma Cells in Nasal Polyps
Ya Na ZHANG ; Jia SONG ; Guan Ting ZHAI ; Hai WANG ; Ren Zhong LUO ; Jing Xian LI ; Bo LIAO ; Jin MA ; Heng WANG ; Xiang LU ; Da Bo LIU ; Zheng LIU
Allergy, Asthma & Immunology Research 2020;12(2):274-291
PURPOSE: Plasma cells and immunoglobulins (Igs) play a pivotal role in the induction and maintenance of chronic inflammation in nasal polyps. During secondary immune responses, plasma cell survival and Ig production are regulated by the local environment. The purpose of the present study was to investigate the presence of long-lived plasma cells (LLPCs) and specific survival niches for LLPCs in human nasal polyps.METHODS: Nasal mucosal samples were cultured with an air-liquid interface system and the Ig levels in culture supernatants were analyzed by enzyme-linked immunosorbent assay. The characteristics of LLPCs in nasal polyps were determined by immunohistochemistry and immunofluorescence. The expression of neurotrophins as well as their receptors was detected by quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescence, and Western blotting.RESULTS: The numbers of CD138⁺ total plasma cells and BCL2⁺ plasma cells were increased in both eosinophilic and non-eosinophilic nasal polyps compared with those in normal tissues. The production of IgG, IgA, and IgE was detected in culture supernatants even after a 32-day culture of nasal polyps. Although the total numbers of plasma cells were decreased in nasal polyps after culture, the numbers of BCL2⁺ plasma cells remained stable. The expression of nerve growth factor (NGF) as well as tropomyosin receptor kinase (Trk) A, a high-affinity receptor for NGF, was upregulated in both eosinophilic and non-eosinophilic nasal polyps. In addition, BCL2⁺ plasma cell numbers were positively correlated with NGF and TrkA mRNA expression in nasal mucosal tissues. Polyp plasma cells had the expression of TrkA.CONCLUSIONS: Human nasal polyps harbor a population of LLPCs and NGF may be involved in their prolonged survival. LLPCs may be a novel therapeutic target for suppressing the local Ig production in nasal polyps.
Blotting, Western
;
Enzyme-Linked Immunosorbent Assay
;
Eosinophils
;
Fluorescent Antibody Technique
;
Humans
;
Immunoglobulin A
;
Immunoglobulin E
;
Immunoglobulin G
;
Immunoglobulins
;
Immunohistochemistry
;
Inflammation
;
Mucous Membrane
;
Nasal Polyps
;
Nerve Growth Factor
;
Nerve Growth Factors
;
Phosphotransferases
;
Plasma Cells
;
Plasma
;
Polyps
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Tropomyosin
2.Establishment of a fast discriminant model with electronic nose for Polygonati Rhizoma mildew based on odor variation.
Shu-Lin YU ; Jian-Ting GONG ; Li LI ; Jia-Li GUAN ; En-Ai ZHAI ; Shao-Qin OUYANG ; Hui-Qin ZOU ; Yong-Hong YAN
China Journal of Chinese Materia Medica 2023;48(7):1833-1839
The odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees was analyzed and the relationship between the odor variation and the mildewing degree was explored. A fast discriminant model was established according to the response intensity of electronic nose. The α-FOX3000 electronic nose was applied to analyze the odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees and the radar map was used to analyze the main contributors among the volatile organic compounds. The feature data were processed and analyzed by partial least squares discriminant analysis(PLS-DA), K-nearest neighbor(KNN), sequential minimal optimization(SMO), random forest(RF) and naive Bayes(NB), respectively. According to the radar map of the electronic nose, the response values of three sensors, namely T70/2, T30/1, and P10/2, increased with the mildewing, indicating that the Pollygonati Rhizoma produced alkanes and aromatic compounds after the mildewing. According to PLS-DA model, Pollygonati Rhizoma samples of three mildewing degrees could be well distinguished in three areas. Afterwards, the variable importance analysis of the sensors was carried out and then five sensors that contributed a lot to the classification were screened out: T70/2, T30/1, PA/2, P10/1 and P40/1. The classification accuracy of all the four models(KNN, SMO, RF, and NB) was above 90%, and KNN was most accurate(accuracy: 97.2%). Different volatile organic compounds were produced after the mildewing of Pollygonati Rhizoma, and they could be detected by electronic nose, which laid a foundation for the establishment of a rapid discrimination model for mildewed Pollygonati Rhizoma. This paper shed lights on further research on change pattern and quick detection of volatile organic compounds in moldy Chinese herbal medicines.
Electronic Nose
;
Odorants/analysis*
;
Volatile Organic Compounds/analysis*
;
Bayes Theorem
;
Drugs, Chinese Herbal/analysis*
;
Discriminant Analysis