1.Structure and immunomodulatory activity of extracellular polysaccharide from Grifola frondosa.
Lirong HAN ; Dai CHENG ; Lirui WANG ; Chunling WANG
Chinese Journal of Biotechnology 2016;32(5):648-656
We aimed at analyzing the structure of extracellular polysaccharide A from Grifola frondosa (EXGFP-A) and testing its immunomodulatory activity. Structural analysis shows that EXGFP-A was a contained α-D-glucoside bond and pyranose ring. GC analysis reveals that EXGFP-A was mainly composed of rhamnose, arabinose, xylose, mannose, glucose, galactose, by the molar ratio of 0.28:0.31:0.30:0.06:7.98:0.61. The results of MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicates when EXGFP-A was at a concentration of 80 μg/mL and treatment time of 48 h, RAW264.7 cells proliferation index reached a maximum of 137.5%. Meanwhile, the AO staining showed that EXGFP-A activated RAW264.7 cells and improved the level of intracellular nucleic acid metabolism. In addition, in a certain range of concentration, EXGFP-A was able to increase the release of NO in RAW264.7 cells, and upregulate the mRNA expression of immunological factor TNF-α, IL-1β, IL-6, IL-12, IFN-γ and iNOS of RAW264.7 cells. Our results confirm that EXGFP-A had immunomodulatory activity. Our findings provided scientific basis for the structural analysis and application of Grifola frondosa polysaccharide.
Animals
;
Cytokines
;
metabolism
;
Grifola
;
chemistry
;
Mice
;
Nitric Oxide Synthase Type II
;
metabolism
;
Polysaccharides
;
immunology
;
RAW 264.7 Cells
2.Meta-analysis on effect of Grifola frondosa polysaccharide in regulating in vivo immunoregulatory function on animal disease models.
Ting ZHANG ; Fei ZHAO ; Kai-Nan WU ; Yu JIA ; Xu-Liang LIAO ; Feng-Wen YANG ; Jun-Hua ZHANG ; Bin MA
China Journal of Chinese Materia Medica 2019;44(23):5174-5183
The study aimed to explore the in vivo immunoregulatory function of Grifola frondosa polysaccharide( GFP) on animal disease models. Databases of PubMed,Embase,Web of Scinece,CNKI,CBM and Wan Fang Data were searched from the date of their establishment to February 2018. Two reviewers independently screened included studies and evaluated their quality by using SYRCLE's risk of bias tool. R software was used to analyze the data. Finally,20 animal experiment studies were included. According to Metaanalysis. For cellular immunity,GFP could effectively enhance the proliferation of effect or T cells,natural killer cells and macrophages in mice. The percentage of CD4+T cells( MD = 1. 89,95% CI [0. 94,2. 83],P < 0. 000 1),CD8+T cells( MD = 8. 46,95% CI[5. 93,11. 00],P<0. 000 1),NK cells( MD= 2. 67,95% CI [0. 23,5. 11],P= 0. 03),and macrophages( MD= 14. 09,95% CI[0. 84,27. 34],P= 0. 04) were all higher than those in control group. For humoral immunity,GFP could increase the secretion of TNF-α and INF-γ. The secretion of TNF-α( SMD = 15. 92,95% CI [9. 07,22. 76],P<0. 000 1) and INF-γ( SMD = 5. 34,95% CI[3. 42,7. 26],P<0. 000 1) were all higher than those in control group. In conclusion,GFP could regulate immunologic function by enhancing the proliferation activity of immune cells( CD4+T cells,CD8+T cells,NK cells and macrophages) and the secretion of immune factors( TNF-α and INF-γ) . However,it is necessary to further standardize the selection of specific surface markers of immune cells and the administration of GFP,in order to reduce the heterogeneity among the studies. At the same time,more attention shall be paid to experimental design,implementation and full report,especially to the establishment and implementation of animal experimental registration system,so as to improve the transparency and quality of the whole process of animal experimental research,enhance the value of basic research ultimately,and provide a reliable theoretical basis for the transformation of basic research into clinical research.
Animals
;
Cytokines/immunology*
;
Disease Models, Animal
;
Grifola/chemistry*
;
Immune System
;
Killer Cells, Natural/immunology*
;
Macrophages/immunology*
;
Mice
;
Polysaccharides/pharmacology*
;
T-Lymphocytes/immunology*
3.Experimental study on intervention effect of Grifola frondosa on nonalcoholic steatohepatitis.
Xian-wei DAI ; Zhi-yun CHEN ; Mao-xiang YAN ; Bei-hui HE
China Journal of Chinese Materia Medica 2015;40(9):1808-1811
To study the preventive effect of Grifola frondosa on nonalcoholic steatohepatitis (NASH). The rat model of NASH was established by feeding high-fat diets for 12 weeks and intervened with 0.5 g · kg(-1) · d(-1) and 1.0 g · kg(-1) · d(-1) of C. frondosa powder suspensions. The degrees of hepatocyte fatty degeneration and inflammation were observed under the optical microscope with routine HE staining. The NAFLD activity scores (NAS) were calculated. Serum ALT, AST and hepatic TG and CHOL were tested by the biochemical method. The hepatic MDA was examined by thiobarbituric acid method. The hepatic SOD was tested by the xanthine oxidase test. The hepatic GSH-PX activity was determined by the dithio-nitrobenzoic acid method. Hepatic TNF-α and IL-6 were detected by the enzyme-linked immunosorbent assay (ELISA). The NASH model group induced by high-fat diets showed higher hepatic NAS, ser- um ALT, AST, CHOL and hepatic TG, CHOL, MDA, TNF-α, IL-6 (P < 0.01 or P < 0.05) and lower serum TG and hepatic SOD, GSH-PX (P < 0.01, P < 0.05) than the normal control group. After being intervened with different doses of G. frondosa, the NASH group revealed significantly lower hepatic NAS, serum ALT and hepatic TG, CHOL, MDA, TNF-α and IL-6 (P < 0.05) and higher hepatic SOD, GSH-PX (P < 0.05) than the model group. G. frondosa may prevent the further development of NASH by improving the disorder of lipid metabolism in rats with NASH induced by high-fat diets, relieving the level of oxidative stress and reducing the generation of inflammatory cytokines.
Animals
;
Drugs, Chinese Herbal
;
administration & dosage
;
Grifola
;
chemistry
;
Humans
;
Interleukin-6
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Male
;
Non-alcoholic Fatty Liver Disease
;
drug therapy
;
metabolism
;
Oxidative Stress
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha
;
metabolism
4.Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa.
Xiao-Lei MA ; Meng MENG ; Li-Rong HAN ; Zheng LI ; Xiao-Hong CAO ; Chun-Ling WANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(12):906-914
The present study was designed to evaluate the immune-modulating effects of the polysaccharide from Grifola frondosa (GFP) by using mouse peritoneal macrophage and cytoxan (CTX) induced immunosuppression models. Our results from the phagocytotic and mononuclear phagocytic system function assays showed that GFP-A (one component from GFP) stimulated the phagocytosis of the phagocytes. The splenocyte proliferation assay showed that GFP-A acted the effect combing ConA or LPS in splenocyte proliferation. The results showed that GFP-A increased indices of thymus and spleen, the levels of LDH and ACP in the spleen, the mRNA levels of IL-1β, IL-2, IL-6 and IFN-γ in splenocyte. And GFP-A also significantly increased the expression of CD4(+) and CD8(+) splenic T lymphocytes, which were suppressed by the CTX in peripheral blood. In conclusion, our results indicate that the GFP-A is involved in immunomodulatory effects leading to its modulatory effects on immunosuppression.
Animals
;
Cells, Cultured
;
Female
;
Grifola
;
chemistry
;
Immunologic Factors
;
isolation & purification
;
pharmacology
;
Interleukin-1beta
;
immunology
;
Interleukin-6
;
genetics
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Plant Extracts
;
isolation & purification
;
pharmacology
;
Polysaccharides
;
isolation & purification
;
pharmacology
;
RAW 264.7 Cells
;
T-Lymphocytes
;
drug effects
;
immunology