1.Gene transfection mediated by ultrasound and Pluronic P85 in HepG2 cells.
Fen, WANG ; Kaiyan, LI ; Yunchao, CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(6):700-2
In order to assess whether gene transfection could be mediated by ultrasound in association with P85 and find the appropriate parameters of ultrasound irradiation, the effects of ultrasound with or without P85 on gene transfection of HepG2 cells were examined. The HepG2 cells were irradiated by ultrasound at 1 MHz, 0.4-2.0 W/cm(2) and 50% duty cycle with plasmid encoding enhanced green fluorescent protein (EGFP) as a report gene. Forty-eight h later, the expression of EGFP was detected under the fluorescence microscopy. Transfection efficacy was quantitatively assessed by flow cytometry, and cell viability was evaluated by trypan blue exclusion. The results showed that the transfection efficacy was increased with the increases in ultrasound output power and the ideal transfection efficacy was achieved in HepG2 cells irradiated by ultrasound at 0.8 W/cm(2) for 30 s. The transfection efficacy in ulstrasound+P85 group was three times higher than in single ultrasound group [(17.63+/-1.07)% vs (5.57+/-0.56)%, P<0.05]. The cell viability was about 81% and 62% in ultrasound group and ultrasound+P85 group respectively. It was concluded that ultrasound in combination with P85 could mediate the gene transfection of HepG2 cells, ideal transfection efficacy was achieved by ultrasound irradiation at 0.8 W/cm(2) for 30 s, and P85 could somewhat increase the damage to cells caused by ultrasound.
Cell Survival/genetics
;
Green Fluorescent Proteins/genetics
;
Hep G2 Cells
;
Poloxalene/*pharmacology
;
Transfection
;
Ultrasonics
2.Establishment of a microtubule-fluorescent fusion protein mosaically labeled zebrafish motor neuron system.
Fang YUAN ; Pei-Pei QIAN ; Xin WANG ; Jia-Jing SHENG ; Dong LIU ; Jie GONG
Acta Physiologica Sinica 2022;74(3):411-418
Motor neurons are an important type of neurons that control movement. The transgenic fluorescent protein (FP)-labeled motor neurons of zebrafish line is disadvantageous for studying the morphogenesis of motor neurons. For example, the individual motor neuron is indistinguishable in this transgenic line due to the high density of the motor neurons and the interlaced synapses. In order to optimize the in vivo imaging methods for the analysis of motor neurons, the present study was aimed to establish a microtubule-fluorescent fusion protein mosaic system that can label motor neurons in zebrafish. Firstly, the promotor of mnx1, which was highly expressed in the spinal cord motor neurons, was subcloned into pDestTol2pA2 construct combined with the GFP-α-Tubulin fusion protein sequence by Gateway cloning technique. Then the recombinant constructs were co-injected with transposase mRNA into the 4-8 cell zebrafish embryos. Confocal imaging analysis was performed at 72 hours post fertilization (hpf). The results showed that the GFP fusion protein was expressed in three different types of motor neurons, and individual motor neurons were mosaically labeled. Further, the present study analyzed the correlation between the injection dose and the number and distribution of the mosaically labeled neurons. Fifteen nanograms of the recombinant constructs were suggested as an appropriate injection dose. Also, the defects of the motor neuron caused by the down-regulation of insm1a and kif15 were verified with this system. These results indicate that our novel microtubule-fluorescent fusion protein mosaic system can efficiently label motor neurons in zebrafish, which provides a more effective model for exploring the development and morphogenesis of motor neurons. It may also help to decipher the mechanisms underlying motor neuron disease and can be potentially utilized in drug screening.
Animals
;
Animals, Genetically Modified
;
Green Fluorescent Proteins/pharmacology*
;
Microtubules/metabolism*
;
Motor Neurons
;
Zebrafish/genetics*
;
Zebrafish Proteins/genetics*
3.Construction of efficient conjugal plasmids between Escherichia coli and Streptomycetes.
Hong-Bo MO ; Lin-Quan BAI ; Sheng-Lan WANG ; Ke-Qian YANG
Chinese Journal of Biotechnology 2004;20(5):662-666
Conjugal plasmid pGH112 has been developed based on the replicons of Streptomyces coelicolor plasmid SCP2 and E. coli ColE. The plasmid contains ampicilin resistance gene(amp) for selection in E. coli and thiostrepton resistance gene (tsr) for selection in Streptomycetes, and a 0.76 kb oriT fragment of (IncP) RK2. Conjugal transfer of pGH112 was performed from E. coli to S. coelicolor A3(2), S. avermitilis, S. lividans TK54, S. toxytricini NNRL15443, S. venezuelae ISP5230 and Sacc. erythraea by conjugation, results show that the plasmid was able to transfer efficenctly from E. coli to Streptomycetes, was stably inherited in the recipients. pGH113 was constructed from pGH112 by combining the constitutive ermE promoter with green fluorescent protein gene(gfp).
Ampicillin Resistance
;
genetics
;
Conjugation, Genetic
;
Escherichia coli
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
Plasmids
;
Streptomycetaceae
;
genetics
;
Thiostrepton
;
pharmacology
5.Cell penetration of supercharged green fluorescent protein +36GFP as DNA carrier.
Hongyu LI ; Yourong FANG ; Haitao YU ; Ying YU ; Hui YAN
Chinese Journal of Biotechnology 2013;29(4):520-531
In this study, we expressed and purified supercharged green fluorescent protein (+36GFP) that we used to study its combination with nucleic acid and its cell transduction efficiency as carrier of DNA. We transformed pET+36GFP-HA2 plasmid into Escherichia coli BL21 (DE3), then expressed and purified the target protein. We used the protein to transduce a variety of mammalian cell lines including B16 cells, 293 cells, A549 cells and HepG2 cells at specified protein concentrations. Transduction efficiency of the protein was analyzed by flow cytometry. Under laser scanning confocal microscope, we observed visually transduction efficiency of +36GFP protein (100 nmol/L) to A549 cells. We incubated +36GFP with plasmid DNA and analyzed their binding ability with gel mobility shift assay. Then we transduced cells with the mixture of plasmid DNA/+36GFP protein at various ratio and detected the expression of reporter gene by using laser scanning confocal microscope and flow cytometry. The experimental results demonstrate that +36GFP had high transduction efficiency, and as the concentration increased, the efficiency improved in a dose-dependent manner. Gel mobility shift assay indicates that +36GFP could bind to plasmid DNA, blocking the migration of DNA in the gel in a concentration-dependent manner. After the plasmid wrapped by +36GFP penetrated into cells, the cells could express target protein efficiently, proving that +36GFP had the ability to carry nucleic acids into cells. Sucussful expression and purification of +36GFP protein confirms its high efficiency of cell transduction and its ability as carrier to deliver exogenous nucleic acids into cells.
Cell Line, Tumor
;
DNA
;
genetics
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Green Fluorescent Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Humans
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Transduction, Genetic
;
methods
;
Transfection
6.In vivo expression of green fluorescent protein gene and immunogenicity of ES312 vaccine both mediated by starburst polyamidoamine dendrimers.
Jun-Jun DING ; Chen-Ying GUO ; Qi-Liang CAI ; Ya-Hui LIN ; Heng WANG
Acta Academiae Medicinae Sinicae 2005;27(4):499-503
OBJECTIVETo study the expression of green fluorescent protein gene and immunogenicity of ES312 vaccine both mediated by Starburst polyamidoamine (PAMAM) dendrimers in vivo.
METHODSThe complex of green fluorescent protein or ES312 gene with Starburst PAMAM dendrimers were injected intramuscularly in Balb/c mice. The expression level and distribution of green fluorescent protein gene was detected by flow cytometer, Western blot and immunofluorescence assay. The immunogenicity of DNA vaccine was detected by enzyme-linked immunosorbent assay.
RESULTSThe expression of green fluorescent protein mediated by Starburst PAMAM dendrimers was found in heart, liver, spleen, lung, kidney, brain and injected muscle from 2 hours to 7 days after the vaccination. The highest expression level of the gene was detected in kidney, as well as in endothelial cells. The antibody response evoked by the DNA vaccine carried by the Starburst PAMAM dendrimers was significantly higher than that of the net DNA vaccination. Vaccination with Starburst PAMAM dendrimers elicited higher expression level of the gene in brain and kidney than with the net gene itself.
CONCLUSIONAs a novel non-viral DNA carrier with low self-antigenicity, Starburst PAMAM dendrimers have potential to mediate DNA transfer and expression in vivo.
Animals ; Biocompatible Materials ; pharmacology ; Dendrimers ; Drug Carriers ; pharmacology ; Female ; Green Fluorescent Proteins ; genetics ; pharmacokinetics ; Malaria Vaccines ; immunology ; Mice ; Mice, Inbred BALB C ; Polyamines ; pharmacology ; Vaccination ; Vaccines, DNA ; immunology
7.Chitosan-siRNA complex nanoparticles for gene silencing.
Journal of Biomedical Engineering 2010;27(1):97-101
Small interference RNA (siRNA) induced RNA interference (RNAi) technology has shown high specificity and high efficiency of silencing target gene expression, and it is becoming a promising candidate drug for the therapy of cancer and viral infection diseases. At present, the lack of safe and effective carrier materials and delivery systems of siRNA through extracellular and intracellular barriers still hampers the clinical application. In order to overcome this difficulty, we proposed using chitosan, naturally occurring polycation, to form complex siRNA against green fluorescence protein (siRNA-eGFP). The spherical and stable chitosan-siRNA nanoparticles with 83%-94% siRNA complex efficiency can be formulated under mild electrostatic interaction. The size and Zeta potential of nanoparticles were within the range of 90-180 nm and 10-30 mV, respectively. 80% cell viability could be maintained inthe course of incubating with chitosan-siRNA nanoparticles. Moreover, nearly 80% gene silencing efficiency of chitosan-siRNA nanoparticles was realized.
Cell Line
;
Chitosan
;
pharmacology
;
Drug Carriers
;
chemistry
;
Drug Delivery Systems
;
Green Fluorescent Proteins
;
chemistry
;
Humans
;
Nanoparticles
;
RNA Interference
;
RNA, Small Interfering
;
genetics
;
pharmacology
8.Effect of glypican-3 on the proliferation of human hepatoma cell line MHCC97-L in vitro.
Ru-zhai QIN ; Fei-ye LIU ; Bin CHEN ; Jian-ming XIE ; Yang YANG ; Da-yong ZHEGN ; Rong-cheng LUO
Journal of Southern Medical University 2011;31(3):448-452
OBJECTIVETo construct glypican-3 (GPC3)-green fluorescent protein eukaryotic expression vector pEGFP-c3-GPC3, and analyze the effect of GPC3 on the proliferation of human hepatoma cell line MHCC-97L.
METHODSThe eukaryotic expression vector pEGFP-c3-GPC3 was constructed with recombinant DNA technique and transfected into MHCC-97L cells via Lipofectamine 2000. The cells stably expressing GPC3 were screened by flow cytometry and G418. The mRNA expression of GPC3 was detected by RT-QPCR method, and the protein expression by Western blotting and fluorescence microscope. The effect of GPC3 gene on the growth of the cells was examined by MTT assay.
RESULTSRestriction endonuclease analysis and DNA sequencing verified correct construction of the recombinant plasmid. The green fluorescence was detected in the transfected MHCC-97L cells under fluorescence microscope. RT-QPCR and Western blotting both confirmed successful expression of GPC3 in MHCC-97L cells. The growth curve showed a significant acceleration of the proliferation of the transfected MHCC97-Lsol;GPC3 cells as compared with MHCC97-L and MHCC97-L/C3 cells (P<0.001).
CONCLUSIONWe have successfully constructed the eukaryotic expression vector pEGFR-c3-GPC3, which allows stable GPC3 expression in MHCC97-L/GPC3 cells. The upregulation of GPC3 expression can stimulate the growth of hepatoma cell line MHCC97-L in vitro.
Carcinoma, Hepatocellular ; pathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Genetic Vectors ; Glypicans ; pharmacology ; Green Fluorescent Proteins ; genetics ; Humans ; Liver Neoplasms ; pathology ; Plasmids ; Transfection
9.Expression of porcine interferon-gamma and its safe antiviral assay.
Fan HE ; Yuan SUN ; Jinying GE ; Miao LI ; Tianming CHANG ; Zhigao BU ; Huaji QIU
Chinese Journal of Biotechnology 2010;26(4):439-447
In order to ensure the biosafety of the IFN-gamma antiviral activity assay, we used a replication-deficient VSV carrying GFP as an interferon sensitive indicator virus (VSVdeltaG*G). The antiviral activities of porcine IFN-gamma expressed in Escherichia coli and in baculovirus on MDBK cells were assessed. The results showed that the antiviral activity of porcine IFN-gamma expressed in baculovirus could reach 10(5) IU/mL, while the porcine IFN-gamma expressed in E. coli showed some antiviral activity (32 IU/mL) after refolding. The results of the VSVdeltaG*G-based antiviral assay were almost identical to that of the VSV*GFP-based assay, suggesting it is highly feasible to use VSVdeltaG*G as a substitute for VSV*GFP, making assays for IFN-gamma antiviral activity safer and more accurate.
Animals
;
Antiviral Agents
;
pharmacology
;
Baculoviridae
;
genetics
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
biosynthesis
;
genetics
;
Interferon-gamma
;
biosynthesis
;
genetics
;
metabolism
;
pharmacology
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Swine
;
Vesiculovirus
;
drug effects
;
physiology
10.Transfection with 5-lipoxygenase/green fluorescence protein for evaluating injury-induced 5-lipoxygenase translocation to the nuclear membrane in PC12 cells.
Yu-Mei YUAN ; Cheng-Tan LI ; Zhen-Qiu MA ; Fang PENG ; Wei-Ping ZHANG ; Yue-Liang SHEN ; Er-Qing WEI
Journal of Zhejiang University. Medical sciences 2007;36(2):111-116
OBJECTIVETo evaluate the translocation of 5-lipoxygenase (5-LOX)) after injuries by transfection with green fluorescence protein (GFP)/5-LOX in PC12 cells.
METHODSPC12 cells were stably transfected with pEGFP-C2/5-LOX (GFP/5-LOX) or pEGFP-C2 vectors (control). After treatment with oxygen-glucose deprivation (OGD), H(2)O(2) or NMDA, GFP/5-LOX localization in the cells was observed under a fluorescence microscope. Wild-type 5-LOX was determined by immunostaining after the treatment.
RESULTIn the GFP/5-LOX-transfected cells, GFP/5-LOX was primarily localized in the nucleus; while in the GFP-transfected cells, GFP was localized in both the cytoplasm and nucleus. After OGD and H(2)O(2) treatments, GFP/5-LOX was translocated to the nuclear membrane in 50.6 % and 57.7% cells respectively. However, after NMDA treatment or in GFP-transfected cells, no translocation was observed. Wild-type 5-LOX was distributed in the nuclei and cytoplasm, and all the 3 treatments induced 5-LOX translocation to the nuclear membrane.
CONCLUSIONIn the PC12 cells stably transfected with GFP/5-LOX, GFP/5-LOX is primarily distributed in the nuclei; the OGD-, H(2)O(2)- and NMDA-induced 5-LOX translocation exhibits different properties.
Animals ; Arachidonate 5-Lipoxygenase ; genetics ; metabolism ; Cell Nucleus ; metabolism ; Glucose ; pharmacology ; Green Fluorescent Proteins ; genetics ; metabolism ; Hydrogen Peroxide ; pharmacology ; Microscopy, Fluorescence ; N-Methylaspartate ; pharmacology ; Nuclear Envelope ; metabolism ; PC12 Cells ; Protein Transport ; drug effects ; Rats ; Recombinant Fusion Proteins ; genetics ; metabolism ; Transfection