1.Orange fluorescent protein--modification of green fluorescent protein GFPxm.
Wen-Xin LUO ; Min CHEN ; Tong CHENG ; Bao-Quan GUAN ; Shao-Wei LI ; Shao-Jing LI ; Jun ZHANG ; Ning-Shao XIA
Chinese Journal of Biotechnology 2003;19(1):56-62
Recently, we have reported a new gfp gene isolated from Aequorea macrodactyla. The protein purified from expressed E. coli exhibited an excitation peak at 476 nm and an emission peak at 496 nm. However, the drawback of only maturing to fluorescence at low temperature limited its applications. In this paper, we further describe twelve mutants of GFPxm. Seven mutants produced enhanced fluorescence when expressed in E. coli at higher temperature (37 degrees C). After six hours of induction at 25 degrees C, 32 degrees C and 37 degrees C respectively, the relative fluorescent intensities of GFPxm16, GFPxm18 and GFPxm19 were higher than that of EGFP, moreover GFPxm16 and GFPxm163 could preserve high fluorescent intensity even expressed at 42 degrees C. Four mutants of the seven could reach high expression level in three kind of mammalian cells. Another 6 mutants had red-shift of excitation-emission maxima, and longest excitation-emission maxima were 514nm and 525nm. Another three mutants had two excitation peaks, and one mutant had only one UV-excitation peak. The most exciting result is the mutant of OFPxm with orange color. The mutant has an excitation peak at 509 nm and an emission peak at 523nm. 523nm is yellowish green but the protein is orange observed by eyes. The mutant could reach high expression level and matured at higher temperature but the fluorescent intensity was comparatively low because of low quantum yield.
Animals
;
Electrophoresis, Polyacrylamide Gel
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Luminescent Proteins
;
genetics
;
metabolism
;
Mutation
;
Temperature
2.Transformation of enhanced green fluorescent protein gene in Paecilomyces lilacinus mediated by Agrobacterium tumefaciens.
Jieping WANG ; Jiaxu WANG ; Fan LIU ; Cangsang PAN
Chinese Journal of Biotechnology 2010;26(5):630-634
The main aim of this study was to transform the enhanced green fluorescent protein gene (egfp) into biocontrol fungus Paecilomyces lilacinus strain 9410. We constructed the expression vector pUPNGT of the fusion gene nptII-egfp using pcDNA3.1(-) as a helper plasmid. The egfp gene was then transformed into P. lilacinus strain 9410 via Agrobacterium tumefaciens-mediated transformation. PCR and Southern blotting analysis showed that the egfp gene was integrated into the genomes of the tested transformants and the integration manner was single-copy. The transformants could generate green fluorescence when they were excited by 488 nm blue laser. These results indicated that the egfp gene had been successfully transformed into P. lilacinus 9410 and expressed in the tested transformants. Our work may provide a new approach to assess environmental safety and practical biocontrol efficacy ofP. lilacinus under different conditions.
Agrobacterium tumefaciens
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
Paecilomyces
;
genetics
;
metabolism
;
Polymerase Chain Reaction
;
methods
;
Transformation, Genetic
3.Co-occlusion of foreign protein into polyhedra with BmNPV polyhedrin.
Xing-Wei XIANG ; Rui YANG ; Lin CHEN ; Xiao-Long HU ; Shao-Fang YU ; Xiao-Feng WU
Chinese Journal of Virology 2011;27(4):366-371
In order to make clear the packing mechanism of the BmNPV polyhedra, a polyhedrin gene negative recombinant baculovirus, vBmBac(polh-)-5B-EGFP, expressing EGFP was constructed, and used to infect BmN cells jointly with wild-type BmNPV. Fluorescent microscopic observation demonstrated that EGFP and polyhedrin were expressed simultaneously, and the EGFP expression and polyhedra formation occurred in most of the jointly infected cells. Analysis of the purified polyhedra from jointly infected BmN cells showed that the foreign proteins were present in the polyhedra. The results indicated that BmNPV polyhedrin could incorporate proteins other than viral proteins into the polyhedra. It implies that a nonspecific recognition mechanism exists in the embedment of BmNPV polyhedra.
Animals
;
Bombyx
;
Gene Expression
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Nucleopolyhedrovirus
;
genetics
;
physiology
;
Viral Structural Proteins
;
genetics
;
metabolism
;
Virus Assembly
4.Microfluidic chip for detecting the expression of green fluorescent protein in Bacillus subtilis.
Huijun DONG ; Jinglin FU ; Yongquan LI ; Junyun JIANG
Chinese Journal of Biotechnology 2009;25(7):1077-1081
Laser scanning confocal microscope (LSCM) is currently the only equipment to observe fluorescence. However, this technique has disadvantages such as high cost and long test process. In this study, we developed a new system of laser-induced fluorescence (LIF) for microfluidic chip applied to detecting the expression of green fluorescent protein (GFP) in Bacillus subtilis. This novel system was comprised of laser device, optics unit, microfluidic chip, photomultiplier and computer treatment unit. The tests indicated that microfluidic chip could detect the expression of GFP as sensitively as LSCM in Bacillus subtilis. Moreover, this LIF detection system could instead of PCR to identify the positive clone in this special case. Nevertheless, the LIF system only was suitable to detect the fluorescent strength of GFP, and could not meet the request of some cases for example protein location. Therefore, this system will be applied in environmental detection with microbe, drug discovery and other cases.
Bacillus subtilis
;
isolation & purification
;
metabolism
;
Green Fluorescent Proteins
;
biosynthesis
;
genetics
;
Microfluidic Analytical Techniques
;
methods
5.Construction of fluorescent transgenic zebrafish Tg (ttn.2: EGFP).
Jiale CHEN ; Qiuxiang CAO ; Hui CAO ; Xiangding CHEN ; Yun DENG
Chinese Journal of Biotechnology 2023;39(4):1804-1814
In order to develop a transgenic zebrafish line with green fluorescent protein (enhanced green fluorescent protein, EGFP) expressed specifically in muscle and heart, the recombinant expression vector constructed using the zebrafish ttn.2 gene promoter fragment and EGFP gene coding sequence and the capped mRNA of Tol2 transposase were co-injected into the zebrafish 1-cell stage embryos. The stable genetic Tg (ttn.2: EGFP) transgenic zebrafish line was successfully developed by fluorescence detection, followed by genetic hybridization screening and molecular identification. Fluorescence signals and whole-mount in situ hybridization showed that EGFP expression was located in muscle and heart, the specificity of which was consistent with the expression of ttn.2 mRNA. Inverse PCR showed that EGFP was integrated into chromosomes 4 and 11 of zebrafish in No. 33 transgenic line, while integrated into chromosome 1 in No. 34 transgenic line. The successful construction of this fluorescent transgenic zebrafish line, Tg (ttn.2: EGFP), laid a foundation for the research of muscle and heart development and related diseases. In addition, the transgenic zebrafish lines with strong green fluorescence can also be used as a new ornamental fish.
Animals
;
Zebrafish/genetics*
;
Animals, Genetically Modified/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Zebrafish Proteins/genetics*
;
Promoter Regions, Genetic
6.Construction of the recombinant adenovirus carrying sodium/iodide symporter gene.
Rui HUANG ; An'ren KUANG ; Haifang YU ; Chao MA ; Gongshun TANG
Journal of Biomedical Engineering 2005;22(4):765-768
Human Sodium/Iodide symporter gene cDNA was amplified from thyroid tissue of the patient suffering from Graves disease by RT-PCR, and T/A cloned into pGEM-TEasy-NIS for sequencing, subcloned into shuttle plasmid pAdTrack-CMV which contained a green fluorescent protein (GFP) gene, and then forwarded to homologous recombinant in the bacteria BJ5183 that already contained AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the 293 cells to obtain recombinant adenovirus. The results showed that the recombinant AdNIS was correctly constructed and confirmed by restriction enzyme analysis and PCR. The viral titer was 2. 5 - 3 x 10(9) efu/ml. So, the recombinant adenovirus vector carrying hNIS was successfully constructed, thus providing a basis for researches on 131I therapy in nonthyroid carcinoma.
Adenoviridae
;
genetics
;
metabolism
;
DNA, Complementary
;
genetics
;
Genetic Vectors
;
genetics
;
metabolism
;
Graves Disease
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Symporters
;
biosynthesis
;
genetics
7.Efficient transient expression to analyze miRNA targets in rice protoplasts.
Ping GUO ; Yao WU ; Jia LI ; Rongxiang FANG ; Yantao JIA
Chinese Journal of Biotechnology 2014;30(11):1751-1762
Compared with the transgenic approach, transient assays provide a convenient alternative to analyze gene expression. To analyze the relationship between miRNAs and their target genes, a rice protoplast system to detect target gene activity was established. The MIRNA and GFP-fused target sequence (or GFP-fused mutated sequence as a non-target control) were constructed into the same plasmid, and then delivered into rice protoplasts. The GFP expression level decreased significantly when the protoplasts were transfected with the plasmid containing GFP-fused target compared to that of the plasmid with non-target sequence either by fluorescence microscopy or qRT-PCR method. Two microRNA genes, osaMIR156 and osaMIR397, and their target sequences were used to prove the feasibility of the rice protoplast transient assay system. This method will facilitate large-scale screening of rice miRNA target in vivo, and may be suitable for functional analysis of miRNAs of other monocot plants that might share the evolutionarily conserved small RNA processing system with rice.
Gene Targeting
;
Green Fluorescent Proteins
;
genetics
;
MicroRNAs
;
genetics
;
Oryza
;
genetics
;
Plasmids
;
Protoplasts
;
metabolism
;
RNA, Plant
;
genetics
;
Transfection
8.Preliminary application of a mosquito densovirus-mediated artificial intron in vitro and in vive of mosquito.
Yan-hai WANG ; Zhi-fa LAI ; Jin-bao GU
Chinese Journal of Virology 2010;26(5):379-384
An artificial intron consisting of the 5'-donor site (from the first intron of the human beta-globin gene) and the 3'-acceptor site (from the intron of an immunoglobulin gene heavy chain variable region) was obtained with a splice overlap extension PCR and was then inserted in frame into the coding sequence of nostructural protein NS1 gene fused to GFP gene in a recombinant mosquito densovirus plasmid p7NS1-GFP. The constructed plasmid was named as p7NS1-Intron-GFP. The plasmid p7NS1-Intron-GFP was co transfected with the helper plasmid pUCA into C6/36 cells, then the packaged recombinant and wild type viruses were purified and recovered. The second-instars of Aedes albopictus larvae were exposed to recombinant and wild type virus mixed stock. The high level GFP expression in C6/36 cells and larvae was observed under fluorescence microscope, indicating that the inserted artificial intron exerted its normal function in self-splicing both in vitro and in vivo. This study laid a foundation for application of an artificial intron in insect cells and development of new strategy for genetic engineering technology of mosqtuito and its pathogens.
Animals
;
Cell Line
;
Culicidae
;
genetics
;
virology
;
Densovirus
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Introns
;
genetics
;
Polymerase Chain Reaction
9.Establishment of a microtubule-fluorescent fusion protein mosaically labeled zebrafish motor neuron system.
Fang YUAN ; Pei-Pei QIAN ; Xin WANG ; Jia-Jing SHENG ; Dong LIU ; Jie GONG
Acta Physiologica Sinica 2022;74(3):411-418
Motor neurons are an important type of neurons that control movement. The transgenic fluorescent protein (FP)-labeled motor neurons of zebrafish line is disadvantageous for studying the morphogenesis of motor neurons. For example, the individual motor neuron is indistinguishable in this transgenic line due to the high density of the motor neurons and the interlaced synapses. In order to optimize the in vivo imaging methods for the analysis of motor neurons, the present study was aimed to establish a microtubule-fluorescent fusion protein mosaic system that can label motor neurons in zebrafish. Firstly, the promotor of mnx1, which was highly expressed in the spinal cord motor neurons, was subcloned into pDestTol2pA2 construct combined with the GFP-α-Tubulin fusion protein sequence by Gateway cloning technique. Then the recombinant constructs were co-injected with transposase mRNA into the 4-8 cell zebrafish embryos. Confocal imaging analysis was performed at 72 hours post fertilization (hpf). The results showed that the GFP fusion protein was expressed in three different types of motor neurons, and individual motor neurons were mosaically labeled. Further, the present study analyzed the correlation between the injection dose and the number and distribution of the mosaically labeled neurons. Fifteen nanograms of the recombinant constructs were suggested as an appropriate injection dose. Also, the defects of the motor neuron caused by the down-regulation of insm1a and kif15 were verified with this system. These results indicate that our novel microtubule-fluorescent fusion protein mosaic system can efficiently label motor neurons in zebrafish, which provides a more effective model for exploring the development and morphogenesis of motor neurons. It may also help to decipher the mechanisms underlying motor neuron disease and can be potentially utilized in drug screening.
Animals
;
Animals, Genetically Modified
;
Green Fluorescent Proteins/pharmacology*
;
Microtubules/metabolism*
;
Motor Neurons
;
Zebrafish/genetics*
;
Zebrafish Proteins/genetics*
10.The labeling of C57BL/6j derived embryonic stem cells with enhanced green fluorescent protein.
Lu TENG ; Chongben ZHANG ; Jiefang YOU ; Kegang SHANG ; Jun GU
Chinese Medical Journal 2003;116(1):151-153
OBJECTIVETo labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.
METHODSThe EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/chicken beta-actin promoter/beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.
RESULTSWe generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the "green" ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The "green" embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence.
CONCLUSIONSThe hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.
Animals ; Embryo, Mammalian ; cytology ; metabolism ; Green Fluorescent Proteins ; Luminescent Proteins ; genetics ; Mice ; Mice, Inbred C57BL ; Stem Cells ; metabolism ; Transfection