1.Electroacupuncture Improves Pregnancy Outcomes of Assisted Reproduction and Mitochondrial Function of Granulosa Cells in Patients with Polycystic Ovary Syndrome of Phlegm-Dampness Syndrome.
Cong-Hui PANG ; Dan-Yang GUO ; Qi WANG ; Ke-Hua WANG ; Fang LIAN
Chinese journal of integrative medicine 2025;31(12):1105-1112
OBJECTIVE:
To explore the effects of electroacupuncture (EA) on pregnancy outcomes after assisted reproduction and mitochondrial function of granulosa cells (GCs) in patients with polycystic ovary syndrome (PCOS) and phlegm-dampness syndrome.
METHODS:
In this randomized controlled trial, 90 infertile women with PCOS and phlegm-dampness syndrome were recruited between August 2022 and December 2022. Patients were randomly assigned to the EA and control groups using a random sequence of codes in the order of enrolment, with 45 in in each group. Both groups underwent the ovarian stimulation protocol. The patients in the EA group received EA therapy including Zhongwan (CV 12), Qihai (CV 6), bilateral Xuehai (SP 10), Sanyinjiao (SP 6), Yinlingquan (SP 9), Tianshu (ST 25), Zusanli (ST 36), and Fenglong (ST 40), and the patients in the control group was treated with pseudo-acupuncture. The intervention was 25 min twice a week for a total of 6 times until the trigger day after menstruation had ended in the cycle before oocyte retrieval. The primary outcomes were clinical pregnancy rate (CPR) and the number of high-quality embryos. The secondary outcomes were (1) pregnancy-related indicators, including fresh embryo transfer rate (ETR), ovarian hyperstimulation syndrome (OHSS) rate, early pregnancy loss rate (ePLR), ectopic pregnancy rate, live birth rate (LBR), and cumulative CPR; (2) mitochondrial autophagy and mitochondrial membrane potential (MMP) in GCs; and (3) scoring for Chinese medicine syndrome. Adverse events to assess clinical safety were also monitored.
RESULTS:
The cumulative CPR was significantly higher in the EA group (42/45, 93.3%) than in the control group (38/45, 84.4%, P=0.036). The number of high-quality embryos and fresh ETR in the EA group were higher than those in the control group (3.80±1.65 vs. 2.44±1.34, P<0.001; 46.7% vs 24.4%, P=0.028). Ectopic pregnancies were not observed in either group. There were no significant differences in the fresh CPR, OHSS rate, ePLR or LBR between the two groups (P>0.05). Compared with the control group, the EA group showed lower expression levels of miR-146a-5p mRNA and P62 protein in GCs and higher levels of MMP and the LC3-II/LC3-I protein ratio (all P<0.01). The phlegm-dampness syndrome scores of the EA group were significantly lower than those of the control group (P<0.01).
CONCLUSIONS
EA significantly improved pregnancy outcomes in patients with PCOS and phlegm dampness syndrome. Mechanistically, this effect may be related to EA in decreasing miR-146a-5p mRNA expression, promoting mitochondrial autophagy in GCs, and improving mitochondrial function, which may contribute to improved oocyte quality. (Trial registration No. ChiCTR2200062915).
Humans
;
Female
;
Polycystic Ovary Syndrome/therapy*
;
Pregnancy
;
Electroacupuncture
;
Granulosa Cells/metabolism*
;
Adult
;
Mitochondria/metabolism*
;
Pregnancy Outcome
;
Pregnancy Rate
;
Reproductive Techniques, Assisted
;
Infertility, Female/therapy*
2.Lycium barbarum polysaccharides alleviates cisplatin-induced granulosa cell injury by downregulating miR-23a.
Liuqing LIU ; Kun WANG ; Xueqing WANG ; Bingxin DU
Journal of Southern Medical University 2025;45(11):2340-2349
OBJECTIVES:
To evaluate the protective effect of Lycium barbarum polysaccharides (LBP) against cisplatin-induced ovarian granulosa cell injury and investigate its possible mechanisms.
METHODS:
Human granulosa-like tumor cell line (KGN) were treated with 2.5 µg/mL cisplatin for 24 h, followed by treatment with 100, 500, and 1000 mg/L LBP, and the changes in cell viability, apoptosis, level of anti-Müllerian hormone (AMH), and cell ultrastructure were detected with CCK-8 assay, flow cytometry, ELISA and transmission electron microscopy. The cellular expressions of Bax, caspase-3, Bcl-2, and the PI3K/AKT pathway proteins were analyzed using Western blotting, and the expression of miR-23a was detected with RT-qPCR. KGN cell models with lentivirus-mediated miR-23a overexpression or knockdown were used to verify the therapeutic mechanism of LBP.
RESULTS:
Cisplatin treatment significantly inhibited cell viability, induced apoptosis, decreased AMH level, caused ultrastructural abnormalities, increased Bax and caspase-3 expression, and lowered Bcl-2 expression in KGN cells. Cisplatin also suppressed the activation of the PI3K/AKT signaling pathway and upregulated miR-23a expression in the cells. LBP intervention obviously alleviated cisplatin-induced injuries in KGN cells, and in particular, LBP treatment at the medium dose for 24 h significantly improved KGN cell viability, reduced apoptosis, enhanced their endocrine function, and ameliorated ultrastructural abnormalities. Mechanistically, medium-dose LBP obviously activated the PI3K/AKT pathway by downregulating miR-23a in cisplatin-treated cells, subsequently inhibiting Bax and caspase-3 while upregulating Bcl-2. Overexpression of miR-23a weakened while knockdown of miR-23a significantly enhanced the protective effects of LBP.
CONCLUSIONS
LBP alleviates cisplatin-induced apoptosis in KGN cells by inhibiting miR-23a expression and activating the PI3K/AKT pathway, suggesting a potential therapeutic strategy for ovarian function preservation.
Humans
;
Cisplatin/adverse effects*
;
MicroRNAs/genetics*
;
Female
;
Granulosa Cells/cytology*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Down-Regulation
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
3.Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.
Dongshuang WANG ; Meiling ZHANG ; Wang-Sheng WANG ; Weiwei CHU ; Junyu ZHAI ; Yun SUN ; Zi-Jiang CHEN ; Yanzhi DU
Frontiers of Medicine 2025;19(1):149-169
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Polycystic Ovary Syndrome/physiopathology*
;
Female
;
Animals
;
Neurotensin/metabolism*
;
Receptors, Neurotensin/antagonists & inhibitors*
;
Mice
;
Ovulation/drug effects*
;
Humans
;
Granulosa Cells/metabolism*
;
Adult
;
Oocytes/metabolism*
;
MAP Kinase Signaling System
;
Signal Transduction
;
Follicular Fluid/metabolism*
;
Disease Models, Animal
;
Gonadotropin-Releasing Hormone/analogs & derivatives*
4.Expression of PGRMC1 in patients with polycystic ovary syndrome and its molecular mechanism for regulating ovarian granulosa cell apoptosis and glucolipid metabolism.
Jiahe ZHOU ; Zhijing CHEN ; Jieming LI ; Qundi DENG ; Xiuhong PENG ; Li LI
Journal of Central South University(Medical Sciences) 2023;48(4):538-549
OBJECTIVES:
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women with reproductive age, which is associated with hyperandrogenism, insulin resistance, and ovulatory dysfunction. Progesterone receptor membrane component 1 (PGRMC1) can mediate progesterone to inhibit the apoptosis of ovarian granulosa cells and the growth of follicles, and to induce glucolipid metabolism disorder in ovarian granulosa cells, which is closely related to the occurrence and development of PCOS. This study aims to determine the expression of PGRMC1 in serum, ovarian tissue, ovarian granulosa cells, and follicular fluid in PCOS patients and non-PCOS patients, analyze the value of PGRMC1 in diagnosis and prognosis evaluation of PCOS, and investigate its molecular mechanism on ovarian granulosa cell apoptosis and glucolipid metabolism.
METHODS:
A total of 123 patients were collected from the Department of Obstetrics and Gynecology in Guangdong Women and Children Hospital (hereinafter referred to as "our hospital") from August 2021 to March 2022 and divided into 3 groups: a PCOS pre-treatment group (n=42), a PCOS treatment group (n=36), and a control group (n=45). The level of PGRMC1 in serum was detected by enzyme linked immunosorbent assay (ELISA). The diagnostic and prognostic value of PGRMC1 was evaluated in patients with PCOS by receiver operating characteristic (ROC) curve. Sixty patients who underwent a laparoscopic surgery from the Department of Obstetrics and Gynecology in our hospital from January 2014 to December 2016 were collected and divided into a PCOS group and a control group (n=30). The expression and distribution of PGRMC1 protein in ovarian tissues were detected by immunohistochemical staining. Twenty-two patients were collected from Reproductive Medicine Center in our hospital from December 2020 to March 2021, and they divided into a PCOS group and a control group (n=11). ELISA was used to detect the level of PGRMC1 in follicular fluid; real-time RT-PCR was used to detect the expression level of PGRMC1 mRNA in ovarian granulosa cells. Human ovarian granular cell line KGN cells were divided into a scrambled group which was transfected with small interfering RNA (siRNA) without interference and a siPGRMC1 group which was transfected with specific siRNA targeting PGRMC1. The apoptotic rate of KGN cells was detected by flow cytometry. The mRNA expression levels of PGRMC1, insulin receptor (INSR), glucose transporter 4 (GLUT4), very low density lipoprotein receptor (VLDLR), and low density lipoprotein receptor (LDLR) were determined by real-time RT-PCR.
RESULTS:
The serum level of PGRMC1 in the PCOS pre-treatment group was significantly higher than that in the control group (P<0.001), and the serum level of PGRMC1 in the PCOS treatment group was significantly lower than that in the PCOS pre-treatment group (P<0.001). The areas under curve (AUC) of PGRMC1 for the diagnosing and prognosis evaluation of PCOS were 0.923 and 0.893, respectively, and the cut-off values were 620.32 and 814.70 pg/mL, respectively. The positive staining was observed on both ovarian granulosa cells and ovarian stroma, which the staining was deepest in the ovarian granulosa cells. The average optical density of PGRMC1 in the PCOS group was significantly increased in ovarian tissue and ovarian granulosa cells than that in the control group (both P<0.05). Compared with the control group, the PGRMC1 expression levels in ovarian granulosa cells and follicular fluid in the PCOS group were significantly up-regulated (P<0.001 and P<0.01, respectively). Compared with the scrambled group, the apoptotic rate of ovarian granulosa cells was significantly increased in the siPGRMC1 group (P<0.01), the mRNA expression levels of PGRMC1 and INSR in the siPGRMC1 group were significantly down-regulated (P<0.001 and P<0.05, respectively), and the mRNA expression levels of GLUT4, VLDLR and LDLR were significantly up-regulated (all P<0.05).
CONCLUSIONS
Serum level of PGRMC1 is increased in PCOS patients, and decreased after standard treatment. PGRMC1 could be used as molecular marker for diagnosis and prognosis evaluation of PCOS. PGRMC1 mainly localizes in ovarian granulosa cells and might play a key role in regulating ovarian granulosa cell apoptosis and glycolipid metabolism.
Child
;
Pregnancy
;
Humans
;
Female
;
Polycystic Ovary Syndrome
;
Apoptosis
;
Granulosa Cells
;
Lipid Metabolism
;
Membrane Proteins
;
Receptors, Progesterone
5.Qirong Tablets inhibits apoptosis of ovarian granulosa cells via PI3K/Akt/ HIF-1 signaling pathway.
Nan NAN ; Xiao-Li DU ; Miao CHEN ; Jia-Qi LUO
China Journal of Chinese Materia Medica 2023;48(17):4774-4781
This study aims to observe the effect and explore the mechanism of Qirong Tablets in the treatment of premature ovarian insufficiency(POI) in mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor 1(HIF-1) signaling pathway. Sixty SPF female BALB/c mice were randomly divided into normal group, model group, positive control group, Qirong Tablets low-, medium-and high-dose group. The normal group was intraperitoneally injected with the same amount of normal saline, and the other groups were intraperitoneally injected with cyclophosphamide 120 mg·kg~(-1)·d~(-1) once to establish a POI animal model. After the model was successfully established, the low-, medium-and high-dose groups of Qirong Tablets were administered orally with 0.6, 1.2, 2.4 mg·kg~(-1)·d~(-1) respectively. The positive control group was given 0.22 mg·kg~(-1)·d~(-1) Clementine Tablets by intragastric administration, and the normal group and model group were given intragastric administration with the same amount of normal saline, and the treatment was 28 d as a course of treatment. After drug intervention, enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-mullerian hormone(AMH) in peripheral blood, and hematoxylin-eosin(HE) staining to observe the ovarian tissue. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay was used to detect the apoptosis of granulosa cells, and Western blot to determine the expression levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, PI3K, Akt, and HIF-1. Compared with the normal group, the modeling of POI caused loose or destroyed ovarian tissue with vacuolar structures, edema and fibrosis in the ovarian interstitium, disordered or loose arrangement of granulosa cells, and reduced normal follicles. Compared with the model group, drug interventions restored the ovarian tissue and follicles at all the development stages and reduced atretic follicles. Compared with the normal group, the modeling of POI lowered the serum level of E_2 and AMH(P<0.01), and elevated the level of FSH and LH(P<0.01). Compared with the model group, high-dose Qirong Tablets elevated the levels of E_2 and AMH(P<0.05), and lowered the levels of FSH and LH(P<0.05). Compared with the normal group, the modeling of POI up-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 and down-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.01). Compared with the model group, low-, medium-, and high-dose Qirong Tablets down-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 proteins and up-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.05). In conclusion, Qirong Tablets can up-regulate the expression Bcl-2, down-regulate the expression of Bax and caspase-3 in POI mice. Qirong Tablets may inhibit the apoptosis of follicular granulosa cells in mice, thereby delaying ovarian aging, improving reproductive axis function, and strengthening ovarian reserve capacity, which may be associated with the inhibition of PI3K/Akt/HIF-1 pathway.
Humans
;
Mice
;
Female
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
bcl-2-Associated X Protein
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/metabolism*
;
Saline Solution/therapeutic use*
;
Signal Transduction
;
Granulosa Cells
;
Primary Ovarian Insufficiency/drug therapy*
;
Follicle Stimulating Hormone/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
6.Effect of extracellular vesicles and microRNAs in follicular fluid on follicular development.
Hengqin WANG ; Xiaomei WANG ; Kai MENG ; Xutong GONG ; Ying WANG ; Yong ZHANG ; Fusheng QUAN
Chinese Journal of Biotechnology 2020;36(4):632-642
Extracellular vesicles (EVs) refer to bilayer membrane transport vesicles secreted by cells. EVs can take macromolecules from cells and transfer them to receptor cells. Among these macromolecular substances, the most studied are microRNAs (miRNAs). miRNA is non-coding RNA involved in the regulation of gene expression. It has been confirmed that there are different non-coding RNAs in mammalian follicular fluid EVs. EVs carrying miRNA can act as an alternative mechanism for autocrine and paracrine, affecting follicular development. This paper systematically introduced the kinds, characteristics and methods of isolation and identification of EVs, focusing on the effects of EVs and miRNAs on follicular development, including early follicular development, oocyte maturation, follicular dominance and effects on granulosa cell function. At the same time, the authors prospected the future research of EVs and microRNAs in follicular fluid, and provided ideas and directions for the research and application of EVs and miRNA functions in follicular fluid.
Animals
;
Extracellular Vesicles
;
metabolism
;
Female
;
Follicular Fluid
;
chemistry
;
Granulosa Cells
;
drug effects
;
MicroRNAs
;
pharmacology
;
Oogenesis
;
drug effects
7.Triptolide induces autophagy of ovarian granulosa cells via PI3K/AKT/m TOR pathway.
Jun BAI ; Ye-Ke WU ; Ke-Ming WU ; Hong-Li ZHU ; Nan LI ; Mei CHEN ; Li-Xiu LIU
China Journal of Chinese Materia Medica 2019;44(16):3429-3434
The aim of this paper was to observe the concentration,time and mechanism of autophagy induced by triptolide( TP) in ovarian granulosa cells( OGCs). CCK-8 method was used to compare the inhibitory effects of TP at different concentrations on primary cultured rat OGCs and IC50 was calculated. The effects of TP at different concentrations and time points on the expression of OGCs autophagy factor protein and the cascade of PI3 K/AKT/m TOR pathway were detected by Western blot. The effects of TP,autophagy inducer( brefeldin A) and PI3 K/m TOR inhibitor( NVP-BEZ235) on the expression of PI3 K/AKT/m TOR cascade and autophagy related factor protein were detected by Western blot. The results show that the IC50 of different concentrations of TP on OGCs of rat ovary was14. 65 μmol·L-1,and the minimum inhibitory concentration of TP was 0. 1 μmol·L-1( 100 nmol·L-1). Compared with the control group,the expression levels of beclin1 and LC3Ⅱ in each group were significantly higher than those in the control group( P<0. 05 or P<0. 01). After 12 hours of treatment with TP,brefeldin A and NVP-BEZ235,respectively,compared with the control group,TP could significantly promote the expression level of downstream autophagy effect or molecule beclin1,LC3Ⅱ and inhibit the expression level of LC3Ⅰ,p62 protein( P<0. 05 or P< 0. 01). Moreover,the expression of beclin1 and LC3Ⅱ/LC3Ⅰ in TP group was higher than that in brefeldin A group( P<0. 05 or P<0. 01),and the expression of p62 in TP group was lower than that in brefeldin A group( P<0. 05 or P<0. 01). At the same time,TP could significantly inhibit the expression of p-PI3 K,p-AKT,p-mTOR protein,and the inhibitory effect of TP was better than that of NVP-BEZ235 group. This study suggests that 100 nmol·L-1 TP could induce OGCs autophagy successfully in cultured rat ovary for 12 h; TP may induce OGCs autophagy by inhibiting PI3 k/Akt/m TOR signaling pathway.
Animals
;
Apoptosis
;
Autophagy
;
Cell Proliferation
;
Cells, Cultured
;
Diterpenes
;
pharmacology
;
Epoxy Compounds
;
pharmacology
;
Female
;
Granulosa Cells
;
drug effects
;
Phenanthrenes
;
pharmacology
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
metabolism
8.Energy Demand and Its Regulatory Mechanism during Folliculogenesis.
Hao Yan TU ; Xiao Can LEI ; Peng HUO ; Jiang Hua LE ; Shun ZHANG
Acta Academiae Medicinae Sinicae 2019;41(3):408-414
The growth and development of follicles are regulated by genes,hormones and growth factors autocrined and paracrined from granulosa cells,theca cells,and oocytes.Products of glycolysis from granulosa cells such as pyruvate and lactate are one of the main energy sources,which play an important role during folliculogenesis and follicle maturity.Studies on the changes of the products and rate-limiting enzymes during granulosa cells' glycolysis help to clarify the molecular mechanism of energy demand in folliculogenesis and guide the clinical treatment of infertility due to abnormal follicular development.This article reviews recent research advances in the energy demand and regulatory mechanism in different states of folliculogenesis.
Energy Metabolism
;
Female
;
Glycolysis
;
Granulosa Cells
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
Oocytes
;
Ovarian Follicle
;
growth & development
;
Theca Cells
9.Modulatory Effects of Single and Complex Vitamins on the In Vitro Growth of Murine Ovarian Follicles
Yoon Young KIM ; Yong Jin KIM ; Hoon KIM ; Byeong Cheol KANG ; Seung Yup KU ; Chang Suk SUH
Tissue Engineering and Regenerative Medicine 2019;16(3):275-283
BACKGROUND: Vitamin is a well-known co-factor for many metabolic processes and its roles in fertility and follicular growth have been studied. Vitamin supplementation is frequently achieved by daily ingestion in the form of a complex capsule. However, the role of single and complex vitamins in in vitro maturation of murine follicles is not fully elucidated. METHODS: In this study, we evaluated the effects of two forms of vitamins. Pure L-ascorbic acid, and multi-vitamin (vitamin C+vitamin B complex) was treated at two different concentrations (50 and 100 µg/ml), to pre-puberty murine follicles during in vitro maturation. To determine the specific stage of growth that is affected by treatment with vitamins, the vitamins were treated from day 0, 4, 9, and 13. Growth of each follicle was assessed by measuring diameters of whole expanded area and of the granulosa cells. Expression of follicular and oocyte growth-related genes and the effect of vitamin on the viability of follicles was assessed using senescence associated β-galactosidase staining. RESULTS: Treatment with vitamins promoted the in vitro growth of murine follicles and the upregulated the expression of granulosa cell- and oocyte-specific genes such as BMP15, Fsh receptor, and GDF9. The proliferation of the granulosa cells was enhanced by the treatment of vitamin. Fifty µg/ml concentration vitamin showed greater effects compared to higher concentration. The viability of in vitro grown follicles was also significantly improved in vitamin-treated follicles. The effects of single L-ascorbic acid and complex vitamin were not significantly different to those of day 4 and day 9 follicles. Vitamins promoted murine follicle development in vitro with different effects on specific growth stage. CONCLUSION: Supplementation of vitamins during in vitro maturation of murine follicles is an efficient strategy for in vitro expansion of follicular cells. These results could be customized to the sophisticated culture of follicles retrieved from aged or cancer-survived female that contain smaller number of follicles with reduced potential to develop into mature follicles.
Aging
;
Ascorbic Acid
;
Eating
;
Female
;
Fertility
;
Granulosa Cells
;
Humans
;
In Vitro Techniques
;
Metabolism
;
Oocytes
;
Ovarian Follicle
;
Receptors, FSH
;
Vitamins
10.Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome.
Qiaohong LAI ; Wenpei XIANG ; Qing LI ; Hanwang ZHANG ; Yufeng LI ; Guijin ZHU ; Chengliang XIONG ; Lei JIN
Frontiers of Medicine 2018;12(5):518-524
The increased levels of intracellular reactive oxygen species (ROS) in granulosa cells (GCs) may affect the pregnancy results in women with polycystic ovary syndrome (PCOS). In this study, we compared the in vitro fertilization and embryo transfer (IVF-ET) results of 22 patients with PCOS and 25 patients with tubal factor infertility and detected the ROS levels in the GCs of these two groups. Results showed that the PCOS group had significantly larger follicles on the administration day for human chorionic gonadotropin than the tubal factor group (P < 0.05); however, the number of retrieved oocytes was not significantly different between the two groups (P > 0.05). PCOS group had slightly lower fertilization, cleavage, grade I/II embryo, clinical pregnancy, and implantation rates and higher miscarriage rate than the tubal factor group (P > 0.05). We further found a significantly higher ROS level of GCs in the PCOS group than in the tubal factor group (P < 0.05). The increased ROS levels in GCs caused GC apoptosis, whereas NADPH oxidase 2 (NOX2) specific inhibitors (diphenyleneiodonium and apocynin) significantly reduced the ROS production in the PCOS group. In conclusion, the increased ROS expression levels in PCOS GCs greatly induced cell apoptosis, which further affected the oocyte quality and reduced the positive IVF-ET pregnancy results of women with PCOS. NADPH oxidase pathway may be involved in the mechanism of ROS production in GCs of women with PCOS.
Abortion, Spontaneous
;
epidemiology
;
Acetophenones
;
therapeutic use
;
Adult
;
Apoptosis
;
drug effects
;
Embryo Transfer
;
Female
;
Fertilization in Vitro
;
Granulosa Cells
;
metabolism
;
Humans
;
NADPH Oxidases
;
antagonists & inhibitors
;
Onium Compounds
;
therapeutic use
;
Oocyte Retrieval
;
Oxidative Stress
;
Polycystic Ovary Syndrome
;
drug therapy
;
Pregnancy
;
Pregnancy Rate
;
Reactive Oxygen Species
;
metabolism

Result Analysis
Print
Save
E-mail