2.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
3.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
4.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
5.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
6.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
7.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
8.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
9.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
10.Pathological features and clinical managements of nasopharyngeal angiofibroma.
Chang LIN ; Zhi-chun LI ; Jin-mei CHENG ; Gong-biao LIN ; Ai-dong ZHOU ; Zi-xiang YI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2008;43(10):763-766
OBJECTIVETo study the pathological features of nasopharyngeal angiofibroma (NA) and the principles for clinical managements.
METHODSThirty-five patients with NAs were treated in First Affiliated Hospital of Fujian Medical University from Oct. 1981 to May 2007. The pathological changes, sites of origin, causes of intraoperative bleeding and the experiences of managements were retrospectively analysed. Using Fish stage: 6 cases were in stage I, 8 cases were in stage II, 17 cases were in stage III, 4 cases were stage IV. Two cases via endoscopic surgery, 2 cases via palatal approach, 19 cases via midfacial degloving approach, 9 cases via lateral rhinotomy approach, 3 cases via craniofacial combined approach.
RESULTSIn nasal cavity and paranasal sinus, the tumor was covered by squamous or columnar epithelium. The tumor extensions such as in pterygopalatine fossa and infratemporal fossa were covered by fibrous pseudocapsule. All cases of this series originated in the lateral wall of posterior portion of the nasal cavity. Fifteen of thirty-five cases confidentially originated near sphenopalatine foramen. Large and thick vessels in the pedicle region were the exact sites of serious intraoperative bleeding. Thirty-one cases were totally removed. Four cases were subtotal resected. Visual loss revealed in 6 cases, 4 cases visual acuity improved postoperatively. Three cases revealed postoperative dry eye due to surgical involvement of the sphenopalatine ganglion.
CONCLUSIONSnasopharyngeal angiofibroma is covered by epithelium or pseudo-capsule, it does not infiltrate the surrounding tissue. Dissecting along the surface of tumor might decrease bleeding and facilitate removal of tumor. An ideal surgical management should be done according to actually size and image examination, to the greatest extent keeping normal facial appearance. Attention should be paid to the complications such as visual loss and dry eye.
Adolescent ; Adult ; Angiofibroma ; pathology ; surgery ; Child ; Female ; Humans ; Male ; Nasopharyngeal Neoplasms ; pathology ; surgery ; Neoplasm Staging ; Retrospective Studies ; Young Adult