1.Association of the time that elapsed from last vaccination with protective effectiveness against foot-and-mouth disease in small ruminants.
Ehud ELNEKAVE ; Boris EVEN-TOV ; Boris GELMAN ; Beni SHARIR ; Eyal KLEMENT
Journal of Veterinary Science 2015;16(1):87-92
Routine and emergency vaccination of small ruminants against foot-and-mouth disease (FMD) is mandatory in many endemic countries, yet data on the field effectiveness of the vaccines used is scarce. We conducted an investigation of a serotype O FMD outbreak that took place in a sheep and goat pen, and estimated the effectiveness of various routine vaccination statuses. We also evaluated the protection provided by colostrum administration and emergency vaccination. Animals which were routinely vaccinated twice were not clinically affected while disease incidence was observed among animals routinely vaccinated only once (p = 0.004 according to a two-sided Fisher's exact test). In groups vaccinated only once, there was a significant association between the average time that elapsed since last vaccination and the disease incidence (n = 5; Spearman correlation coefficient: r(s) = 1.0, p < 0.01). In addition, non-vaccinated lambs fed colostrum from dams vaccinated more than 2 months before parturition had a mortality rate of 33%. Administration of emergency vaccination 2 days after the occurrence of the index case was the probable reason for the rapid blocking of the FMD spread within 6 days from its onset in the pen.
Animals
;
Colostrum
;
Disease Outbreaks/veterinary
;
Foot-and-Mouth Disease/*prevention & control
;
Goat Diseases/*prevention & control
;
Goats
;
Immunization Schedule
;
Sheep
;
Sheep Diseases/*prevention & control
;
Viral Vaccines/administration & dosage/*immunology
2.Prevalence of peste des petits ruminants among sheep and goats in India.
Vinayagamurthy BALAMURUGAN ; Paramasivam SARAVANAN ; Arnab SEN ; Kaushal Kishor RAJAK ; Gnanavel VENKATESAN ; Paramanandham KRISHNAMOORTHY ; Veerakyathappa BHANUPRAKASH ; Raj Kumar SINGH
Journal of Veterinary Science 2012;13(3):279-285
This study measured the clinical prevalence of peste des petits ruminants (PPR) among sheep and goats in India between 2003 and 2009 by analyzing clinical samples from suspected cases of PPR that were submitted to the Rinderpest and Allied Disease Laboratory, Division of Virology, IVRI, Mukteswar for PPR diagnosis. PPR outbreaks were confirmed by detecting PPR virus (PPRV)-specific antigen in the clinical samples. Clinical samples (blood, nasal swabs, spleen, lymph node, kidney, liver, intestine, and pooled tissue materials) were taken from a total of 592 sheep and 912 goats in different states of India and screened for the presence of PPRV antigen using a monoclonal antibody-based sandwich ELISA kit. A total of 20, 38, and 11 laboratory-confirmed PPR outbreaks occurred among sheep, goat, and combined sheep and goat populations, respectively. Our findings provide evidence of widespread PPR endemicity in India. The underlying reasons could be variations in husbandry practices in different geographical regions, agro-climatic conditions, and livestock migration. Furthermore, decrease in the number of PPR outbreaks over time might be due to the effectiveness of current live PPR vaccines and timely vaccination of target species. Vaccination against PPR has been practiced in India since 2002 to control this disease.
Animals
;
Antibodies, Monoclonal/immunology
;
Antigens, Viral/*blood
;
Disease Outbreaks/*veterinary
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Goat Diseases/*epidemiology/immunology/prevention & control
;
Goats
;
India/epidemiology
;
Nucleocapsid Proteins/immunology
;
Peste-des-Petits-Ruminants/epidemiology/immunology/prevention & control/*veterinary
;
Peste-des-petits-ruminants virus/*immunology/isolation & purification
;
Prevalence
;
Risk Factors
;
Seasons
;
Sheep
;
Sheep Diseases/*epidemiology/immunology/prevention & control
;
Vaccination/veterinary
;
Viral Vaccines/*immunology/therapeutic use
3.Recombinant goat pox virus expressing PPRV H protein.
Weiye CHEN ; Linmao QU ; Sen HU ; Qianqian HU ; Qian ZHANG ; Haibing ZHI ; Kehe HUANG ; Zhigao BU
Chinese Journal of Biotechnology 2009;25(4):496-502
The purpose of the study is to construct recombinant goat pox virus (GPV) expressing Peste des petits ruminants virus (PPRV) H protein, and to evaluate the immunization effect. Recombinant GPV containing PPRV H gene (rGPV-PPRV-H) was selected and purified by gpt and eGFP utilizing plaque purification, and the final selected recombinant GPV was proved to be purified by PCR. Immunofluorescence and Western blotting showed that the recombinant virus could express H protein of PPRV while infecting lamb testis cells. Six goats were immunized with 2 x 10(6) PFU rGPV-PPRV-H through intradermal injection, and were immunized for the second time at 28 days with the same dose recombinant virus after first immunization. Serum was collected after immunization, and was analyzed for the neutralization antibodies. 21 days after first immunization, the neutralization antibodies of GPV were 40, 80, > or = 80, > or = 80, 40, > or = 80 in turn, and neutralization antibodies of PPRV were 80, 80, 80, 80, 40, 40, 10 in turn; 14 days after second immunization, the neutralization antibodies of GPV were all > or = 80, and the neutralization antibodies of PPRV were > 80, 80, > 80, 80, 80 and 40 in turn. This study established a foundation for the industrialization of the PPRV recombinant GPV vaccine.
Animals
;
Capripoxvirus
;
genetics
;
immunology
;
Goat Diseases
;
immunology
;
prevention & control
;
virology
;
Goats
;
Hemagglutinins, Viral
;
genetics
;
immunology
;
metabolism
;
Peste-des-Petits-Ruminants
;
immunology
;
prevention & control
;
Peste-des-petits-ruminants virus
;
genetics
;
immunology
;
Recombinant Proteins
;
genetics
;
immunology
;
metabolism
;
Vaccines, Combined
;
immunology
;
Vaccines, Synthetic
;
immunology
;
Viral Vaccines
;
immunology
4.Cloning and characterization of a selenium-independent glutathione peroxidase (HC29) from adult Haemonchus contortus.
Wei SUN ; Xiaokai SONG ; Ruofeng YAN ; Lixin XU ; Xiangrui LI
Journal of Veterinary Science 2012;13(1):49-58
The complete coding sequence of Haemonchus (H.) contortus HC29 cDNA was generated by rapid amplification of cDNA ends in combination with PCR using primers targeting the 5'- and 3'-ends of the partial mRNA sequence. The cloned HC29 cDNA was shown to be 1,113 bp in size with an open reading frame of 507 bp, encoding a protein of 168 amino acid with a calculated molecular mass of 18.9 kDa. Amino acid sequence analysis revealed that the cloned HC29 cDNA contained the conserved catalytic triad and dimer interface of selenium-independent glutathione peroxidase (GPX). Alignment of the predicted amino acid sequences demonstrated that the protein shared 44.7~80.4% similarity with GPX homologues in the thioredoxin-like family. Phylogenetic analysis revealed close evolutionary proximity of the GPX sequence to the counterpart sequences. These results suggest that HC29 cDNA is a GPX, a member of the thioredoxin-like family. Alignment of the nucleic acid and amino acid sequences of HC29 with those of the reported selenium-independent GPX of H. contortus showed that HC29 contained different types of spliced leader sequences as well as dimer interface sites, although the active sites of both were identical. Enzymatic analysis of recombinant prokaryotic HC29 protein showed activity for the hydrolysis of H2O2. These findings indicate that HC29 is a selenium-independent GPX of H. contortus.
Amino Acid Sequence
;
Animals
;
Base Sequence
;
Cloning, Molecular
;
DNA, Complementary/genetics/isolation & purification
;
Glutathione Peroxidase/*genetics/*metabolism
;
Goat Diseases/parasitology
;
Goats
;
Haemonchiasis/parasitology/prevention & control/*veterinary
;
Haemonchus/*enzymology/*genetics
;
Hydrogen Peroxide/metabolism
;
Molecular Sequence Data
;
Phylogeny
;
RNA, Helminth/chemistry/genetics
;
Random Amplified Polymorphic DNA Technique
;
Rats
;
Rats, Sprague-Dawley
;
Sequence Alignment
;
Sequence Analysis, DNA