1.Scientific connotation in processing of Aconiti Lateralis Radix Praeparata with Glycyrrhizae Radix et Rhizoma based on "interactions between excipients and herbal medicine and component transformation" dynamic processing.
Yi-Hang ZHAO ; Zhi-Wei WANG ; Lu-Ping YANG ; Xiao-Yu LIN ; Xin-Ru TAN ; Ran XU ; Zhi-Xia WANG ; Liu-Yang ZHANG ; An-Qi XU ; Hai-Min LEI ; Peng-Long WANG ; Xue-Mei HUANG
China Journal of Chinese Materia Medica 2024;49(22):6129-6137
The processing of traditional Chinese medicine(TCM) is a core theory within TCM, embodying deep philosophical, cultural, and natural scientific wisdom. Among the various techniques, the "synergistic processing of medicinal materials and excipients" has garnered significant attention due to its uniqueness. This study explored the impact of the adjuvant Glycyrrhizae Radix et Rhizoma on the dynamic process of component transformation during the processing of Aconiti Lateralis Radix Praeparata using techniques such as acidic dye colorimetry, UPLC-Q-TOF-MS/MS, density functional theory(DFT), and molecular dynamics simulations(MDS). The research revealed that during processing, various alkaloid components in Aconiti Lateralis Radix Praeparata exhibited different weak interactions with glycyrrhizic acid in Glycyrrhizae Radix et Rhizoma, affecting the transformation and content changes of alkaloid components such as aconitine, hypaconitine, and other diester-type alkaloids. This study, based on the dynamic process of "interactions between excipients and herbal medicine and component transformation", elucidated the intrinsic mechanism of processing of Aconiti Lateralis Radix Praeparata with Glycyrrhizae Radix et Rhizoma and provided a reference for understanding the scientific principles underlying the excipient processing of TCM.
Drugs, Chinese Herbal/chemistry*
;
Aconitum/chemistry*
;
Excipients/chemistry*
;
Glycyrrhiza/chemistry*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Molecular Dynamics Simulation
;
Alkaloids/chemistry*
;
Glycyrrhizic Acid/chemistry*
2.Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation.
Meng XIAO ; Zhiqing GUO ; Yating YANG ; Chuan HU ; Qian CHENG ; Chen ZHANG ; Yihan WU ; Yanfen CHENG ; Wui Lau Man BENSON ; Sheung Mei Ng SHAMAY ; George Pak-Heng LEUNG ; Jingjing LI ; Huile GAO ; Jinming ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1089-1099
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Animals
;
Humans
;
Antineoplastic Agents/therapeutic use*
;
Glycyrrhizic Acid/therapeutic use*
;
Liposomes/chemistry*
;
Micelles
;
Nanoparticles/chemistry*
;
Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Nanoparticle Drug Delivery System/therapeutic use*
3.Separation, characterization and anti-psoriasis effect of self-assembled nanoparticles from Shaoyao Gancao Decoction.
Zhi-Jian QIN ; Qiao YAN ; Ling-Yu HANG ; Xiao-Han TANG ; Fang-Qin LI ; Yu-Ye XUE ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2023;48(8):2116-2125
This study aims to separate and characterize self-assembled nanoparticles(SAN) from Shaoyao Gancao Decoction(SGD) and determine the content of active compounds. Further, we aimed to observe the therapeutic effect of SGD-SAN on imiquimod-induced psoriasis in mice. The separation of SGD was performed by dialysis, and the separation process was optimized by single factor experiment. The SGD-SAN isolated under the optimal process was characterized, and the content of gallic acid, albiflorin, paeoniflorin, liquiritin, isoliquiritin apioside, isoliquiritin, and glycyrrhizic acid in each part of SGD was determined by HPLC. In the animal experiment, mice were assigned into a normal group, a model group, a methotrexate group(0.001 g·kg~(-1)), and SGD, SGD sediment, SGD dialysate, and SGD-SAN groups of different doses(1, 2, and 4 g·kg~(-1)) respectively. The psoriasis grade of mice was evaluated based on the pathological changes of skin lesions, the content of inflammatory cytokines, organ index and other indicators. The results showed that SAN obtained by centrifugation at 13 000 r·min~(-1) for 30 min was stable after dialysis for 4 times, which were uniform spherical nanoparticles with the particle size of(164.43±1.34) nm, the polydispersity index of(0.28±0.05), and the Zeta potential of(-12.35±0.80) mV. The active compound content accounted for more than 70% of SGD. Compared with the model group, SAN and SGD decreased the skin lesion score, spleen index, and inflammatory cytokine levels(P<0.05 or P<0.01) and alleviated the skin thickening and infiltration of inflammatory cells. However, the sediment group and the dialysate group had no obvious effect. SGD showed a good therapeutic effect on imiquimod-induced psoriasis in mice, and SAN demonstrated the effect equivalent to SGD in a dose-dependent manner. Therefore, we conclude that the SAN formed during decocting is the main active form of SGD, which can lower the levels of inflammatory cytokines, promote the normal differentiation of keratinocytes, and reduce the infiltration of inflammatory cells in the treatment of psoriasis lesions in mice.
Mice
;
Animals
;
Imiquimod
;
Drugs, Chinese Herbal/pharmacology*
;
Glycyrrhizic Acid
;
Chromatography, High Pressure Liquid/methods*
4.Tumor cell lysate with low content of HMGB1 enhances immune response of dendritic cells against lung cancer in mice.
Zhongwu PAN ; Siqi LI ; Yaohui WANG ; Haijun LIU ; Lin GUI ; Bohan DONG
Journal of Southern Medical University 2023;43(6):906-914
OBJECTIVE:
To assess the effect of tumor cell lysate (TCL) with low high-mobility group B1 (HMGB1) content for enhancing immune responses of dendritic cells (DCs) against lung cancer.
METHODS:
TCLs with low HMGB1 content (LH-TCL) and normal HMGB1 content (NH-TCL) were prepared using Lewis lung cancer (LLC) cells in which HMGB1 was inhibited with 30 nmol/L glycyrrhizic acid (GA) and using LLC cells without GA treatment, respectively. Cultured mouse DCs were exposed to different doses of NH-TCL and LH-TCL, using PBS as the control. Flow cytometry was used to detect the expressions of CD11b, CD11c and CD86 and apoptosis of the stimulated DCs, and IL-12 levels in the cell cultures were detected by ELISA. Mouse spleen cells were co-cultured with the stimulated DCs, and the activation of the spleen cells was assessed by detecting CD69 expression using flow cytometry; TNF-β production in the spleen cells was detected with ELISA. The spleen cells were then co-cultured with LLC cells at the effector: target ratios of 5:1, 10:1 and 20:1 to observe the tumor cell killing. In the animal experiment, C57/BL6 mouse models bearing subcutaneous LLC xenograft received multiple injections with the stimulated DCs, and the tumor growth was observed.
RESULTS:
The content of HMGB1 in the TCL prepared using GA-treated LLC cells was significantly reduced (P < 0.01). Compared with NH-TCL, LH-TCL showed a stronger ability to reduce apoptosis (P < 0.001) and promote activation and IL- 12 production in the DCs. Compared with those with NH-TCL stimulation, the DCs stimulated with LH-TCL more effectively induced activation of splenic lymphocytes and enhanced their anti-tumor immunity (P < 0.05). In the cell co-cultures, the spleen lymphocytes activated by LH-TCL-stimulated DCs showed significantly enhanced LLC cell killing activity (P < 0.01). In the tumor-bearing mice, injections of LH-TCL-stimulated DCs effectively activated host anti-tumor immunity and inhibited the growth of the tumor xenografts (P < 0.05).
CONCLUSION
Stimulation of the DCs with LH-TCL enhances the anti-tumor immune activity of the DCs and improve the efficacy of DCbased immunotherapy for LLC in mice.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Dendritic Cells/immunology*
;
Glycyrrhizic Acid/pharmacology*
;
HMGB1 Protein
;
Lung Neoplasms/immunology*
5.Separation, characterization, and antiviral activity of colloidal phase state of Maxing Shigan Decoction.
Hui-Zhu LI ; Dan-Dan SONG ; Chen-Qi CHANG ; Chang LU ; Yue LIU ; Rui CHEN
China Journal of Chinese Materia Medica 2023;48(16):4394-4401
This study focused on the separation, characterization, content determination, and antiviral efficacy research on colloidal particles with different sizes in Maxing Shigan Decoction(MXSG). The mixed colloidal phase of MXSG was initially separated into small colloidal particle segment(S), medium colloidal particle segment(M), and big colloidal particle segment(B) using ultrafiltration. Further fine separation was performed using size-exclusion chromatography. Dynamic light scattering(DLS) and transmission electron microscopy(TEM) were employed to characterize the size and morphology of the separated colloidal particles. UPLC-MS/MS was used to determine the content of ephedrine, amygdalin, glycyrrhizic acid, and the EDTA complexometric titration was used to measure the calcium(Ca~(2+)) content in different colloidal phases. Finally, a respiratory syncytial virus(RSV) infection mouse model was established using intranasal administration. The experimental groups included a blank group, a model group, a ribavirin group, an MXSG group, an S group, an M group, and a B group. Oral administration was given for treatment, and pathological changes in mouse lung tissue and organ indices were evaluated. The results of the study showed that the distribution of ephedrine, amygdalin, glycyrrhizic acid, and Ca~(2+) content was not uniform among different colloidal segments. Among them, the B segment had the highest proportions of the three components, except for Ca~(2+), accounting for 46.35%, 53.72%, and 92.36%, respectively. Size-exclusion chromatography separated colloidal particles with uniform morphology in the size range of 100-500 nm. Compared to the S and M segments, the B segment showed an increased lung index inhibition rate(38.31%), spleen index, and thymus index in RSV-infected mice, and it improved the infiltration of inflammatory cells and lung injury in the lung tissue of mice. The complex components in MXSG form colloidal particles of various sizes and morphologies through heating, and small-molecule active components such as ephedrine, amygdalin, glycyrrhizic acid, and Ca~(2+) participate in the assembly to varying degrees. The main material basis for the antiviral effect of MXSG is the colloidal particles with certain particle sizes formed by the assembly of active components during the heating process.
Mice
;
Animals
;
Amygdalin/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Glycyrrhizic Acid/analysis*
;
Ephedrine/analysis*
;
Chromatography, Liquid
;
Tandem Mass Spectrometry
;
Antiviral Agents/pharmacology*
6.Comparative study on intestinal absorption kinetics of main active components in Sini Decoction and its separated recipes.
Fei GAO ; Fei ZHOU ; Shuai GAN ; Ya-Lan CHEN ; Shu FU ; Mei-Si LIN ; Chao-Mei FU
China Journal of Chinese Materia Medica 2022;47(18):5064-5070
This paper aims to study the difference in the intestinal absorption kinetics of main active components of Sini decoction and its separated recipes and explain the scientificity and rationality of the compatibility of Sini Decoction. A in situ intestinal perfusion rat model was established to evaluate the differences in the absorption of benzoylmesaconine, benzoylaconine, benzoylhypacoitine, mesaconitine, hypaconitine, glycyrrhizic acid, liquiritin and 6-gingerol from Sini Decoction and its separated recipes in the duodenum, jejunum and ileum by high performance liquid chromatography(HPLC). The results indicated that the Sini Decoction group was superior to the Aconiti Lateralis Radix Praeparata group in terms of absorption degree and rate for aconitum alkaloids. The absorption of benzoylmesaconine and hypaconitine in the duodenum, jejunum and ileum was faster and stronger in the Sini Decoction group(P<0.05). The absorption degree of glycyrrhizic acid in the duodenum was significantly higher in the Sini Decoction group than in the Glycyrrhizae Radix et Rhizoma group and the Glycyrrhizae Radix et Rhizoma-Zingiberis Rhizoma group(P<0.05). The absorption rate and degree of 6-gingerol in the ileum in the Sini Decoction group were significantly higher than those in the Zingiberis Rhizoma group(P<0.05). In short, Zingiberis Rhizoma and Glycyrrhizae Radix et Rhizoma can promote the absorption of aconitum alkaloids in different intestinal segments, which reflects the scientific composition of Sini Decoction.
Aconitine/analogs & derivatives*
;
Aconitum
;
Alkaloids
;
Animals
;
Catechols
;
Drugs, Chinese Herbal
;
Fatty Alcohols
;
Glycyrrhizic Acid
;
Intestinal Absorption
;
Kinetics
;
Rats
8.Establishment and application of quality evaluation method for Xiaochaihu Granules based on calibrator samples.
Xue ZHANG ; Hong-Wei WU ; Li-Na LIN ; Shi-Huan TANG ; Hui-Hui LIU ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2022;47(1):85-94
With reference to the production process documented in Chinese Pharmacopoeia, this paper prepared the calibrator samples of Xiaochaihu Granules from multiple batches and established a method for fingerprint analysis and content determination that could be used to evaluate Xiaochaihu Granules available in market. Multiple batches of Chinese herbal pieces contained in Xiaochaihu Granules were collected for preparing the calibrator samples according to the process in Chinese Pharmacopoeia. Following the establishment of fingerprints for calibrator samples by UHPLC, the method for determining the contents of saikosaponin B2, saikosaponin B1, baicalin, wogonoside, baicalein, liquiritin, glycyrrhizin G2 and glycyrrhizic acid in Xiaochaihu Granules was established. The experimental results showed that the fingerprints of calibrator samples had 26 common peaks, covering the chemical compounds of main herbs Bupleuri Radix, Scutellariae Radix, Changii Radix, Glycyrrhizae Radix et Rhizoma, and Rhizoma Zingiberis Recens. The similarity of fingerprints for 47 batches of Xiaochaihu Granules from 31 companies with the calibrator sample fingerprint ranged from 0.74 to 0.99, indicating good applicability of the established fingerprint. The contents of main components baicalin, saikosaponin B2, and glycyrrhizic acid in Xiaochaihu Granules were within the ranges of 22.917-49.108 mg per bag(RSD 19%), 0.28-2.19 mg per bag(RSD 62%), and 0.897-6.541 mg per bag(RSD 41%), respectively. The quality difference in saikosaponin B2, and glycyrrhizic acid among different manufacturers was significant. The fingerprint analysis and content determination method for calibrator samples of Xiaochaihu Granules prepared according to the production process in Chinese Pharmacopoeia has been proved suitable for evaluating the quality of Xiaochaihu Granules from different manufacturers. Saikosaponin B2, glycyrrhizic acid, and liquiritin should be added as content control indicators for Xiaochaihu Granules, aiming to further improve the product quality.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Glycyrrhizic Acid/analysis*
;
Rhizome/chemistry*
;
Scutellaria baicalensis
9.Quality value transmitting of substance benchmarks of Zhuru Decoction.
Lu WANG ; Hui XIE ; Xiao-Li ZHAO ; Mei-Mei PENG ; Ling-Yun QU ; Chun-Qin MAO ; Lin LI ; Yong GUO ; Jin-Cai HOU ; Tu-Lin LU ; Xiao-Bin DAI
China Journal of Chinese Materia Medica 2022;47(2):306-312
A total of 18 batches of Zhuru Decoction samples were prepared. Chromatographic fingerprints were established for Zhuru Decoction and single decoction pieces, the content of which was then determined. The extraction rate ranges, content, and transfer rate ranges of puerarin, liquiritin, and glycyrrhizic acid, together with the common peaks and the similarity range of the fingerprints, were determined to clarify key quality attributes of Zhuru Decoction. The 18 batches of Zhuru Decoction samples had 25 common peaks and the fingerprint similarity higher than 0.95. Puerariae Lobatae Radix, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens had 21, 3, and 1 characteristic peaks, respectively. The 18 batches of samples showed the extraction rates within the range of 18.45%-25.29%. Puerarin had the content of 2.20%-3.07% and the transfer rate of 38.5%-45.9%; liquiritin had the content of 0.24%-0.85% and the transfer rate of 15.9%-37.5%; glycyrrhizic acid had the content of 0.39%-1.87% and the transfer rate of 16.2%-32.8%. In this paper, the quality value transmitting of substance benchmarks of Zhuru Decoction was analyzed based on chromatographic fingerprints, extraction rate, and the content of index components. A scientific and stable method was preliminarily established, which provided a scientific basis for the quality control and formulation development of Zhuru Decoction.
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/standards*
;
Glycyrrhizic Acid/analysis*
;
Quality Control
;
Rhizome/chemistry*
10.Characteristic chromatogram and index components content of substance benchmark of Xuanfu Daizhe Decoction.
Hui XIE ; Li LIN ; Huan-Huan LI ; Jing MAO ; Jin-Guo XU ; Chun-Qin MAO ; Peng LI ; Yin-Hong SHEN-TU ; Tu-Lin LU
China Journal of Chinese Materia Medica 2022;47(8):2090-2098
The methods for determining the characteristic chromatogram and index components content of Xuanfu Daizhe Decoction were established to provide a scientific basis for the quality evaluation of substance benchmarks and preparations. Eighteen batches of Xuanfu Daizhe Decoction were prepared with the decoction pieces of different batches and of the same batch were prepared respectively, and the HPLC characteristic chromatograms of these samples were established. The similarities of the chromatographic fingerprints were analyzed. With liquiritin, glycyrrhizic acid, 6-gingerol, ginsenoside Rg_1, and ginsenoside Re as index components, the high performance liquid chromatography was established for content determination with no more than 70%-130% of the mass average as the limit. The results showed that there were 19 characteristic peaks corresponding to the characteristic chromatograms of 18 batches of Xuanfu Daizhe Decoction, including 8 peaks representing liquiritin, 1,5-O-dicaffeoylqunic acid, ginsenoside Rg_1, ginsenoside Re, 1-O-acetyl britannilactone, ginsenoside Rb_1, glycyrrhizic acid, and 6-gingerol, and the fingerprint similarity was greater than 0.97. The contents of liquiritin, glycyrrhizic acid, 6-gingerol, and ginsenosides Rg_1 + Re in the prepared Xuanfu Daizhe Decoction samples were 0.53%-0.86%, 0.61%-1.2%, 0.023%-0.068%, and 0.33%-0.66%, respectively. Except for several batches, most batches of Xuanfu Daizhe Decoction showed stable contents of index components, with no discrete values. The characteristic chromatograms and index components content characterized the information of Inulae Flos, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens in Xuanfu Daizhe Decoction. This study provides a scientific basis for the further research on the key chemical properties of substance benchmark and preparations of Xuanfu Daizhe Decoction.
Benchmarking
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Ginsenosides/analysis*
;
Glycyrrhizic Acid/analysis*
;
Quality Control

Result Analysis
Print
Save
E-mail