1.Isolation and identification of chemical constituents from aerial parts of Glycyrrhiza uralensis.
Guan-Hua CHANG ; Lu ZHANG ; Jie CUI ; Wen-Quan WANG ; Jun-Ling HOU
China Journal of Chinese Materia Medica 2023;48(16):4413-4420
The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.
Glycyrrhiza uralensis/chemistry*
;
Plant Components, Aerial/chemistry*
2.Testing methods for seed quality of Glycyrrhiza uralensis.
Fulai YU ; Wenquan WANG ; Yuqiang FANG ; Wenjie WANG ; Weidong LI ; Dan XING
China Journal of Chinese Materia Medica 2011;36(6):746-750
OBJECTIVEThe aim of this study was to optimize the testing methods for seed quality, and to provide a basis for establishing seed testing rules and quality grading standard of Glycyrrhiza uralensis.
METHODReferring to the International Seed Testing Rules made by ISTA and Rules for agricultural seed testing (GB/T 3543-1995) issued by China, the seed quality of G. uralensis from different collection areas was measured.
RESULT AND CONCLUSIONThe seed testing methods for quality items of G. uralensis, including sampling, purity analysis, verification of genuineness, weight of 1 000 seeds, percentage germination, moisture content and seed viability of G. uralensis had been initially established.
Germination ; Glycyrrhiza uralensis ; chemistry ; physiology ; Seeds ; physiology
3.Preliminary study in glycyrrhizin content and its influencing factors of wild and cultivated in different region of China.
Shengli WEI ; Wenquan WANG ; Jiyong WANG ; Zhirong SUN ; Chunsheng LIU ; Hai WANG ; Zhigang YANG ; Baocai WU
China Journal of Chinese Materia Medica 2012;37(10):1341-1345
OBJECTIVEIn order to understand the glycyrrhizin content range in the wild and cultivated Glycyrrhiza uralensis in China and to find the related influencing factors of glycyrrhizin content.
METHODThe glycyrrhizin content of 165 wild and 1 013 cultivated G. uralensis samples from 37 countries in 9 provinces was determined by HPLC, and the effects of the producing region, medicinal parts, cultivation years, soil type and texture on the glycyrrhizin content were analyzed.
RESULT AND CONCLUSIONThe average glycyrrhizin content was (4.43 +/- 1.32)% in the wild G. uralensis population, and (1.51 +/- 0.49)% in the cultivated and the glycyrrhizin content in the cultivated was less than the minimum sandards in the Chinese Pharmacopoeia. The glycyrrhizin content was significant different in the wild and cultivated G. uralensis in different producing regions, respectively. The glycyrrhizin content in roots and rhizome of the wild G. uralensis had no significant difference, it had no significant difference in the cultivated G. uralensis from 1 to 4 years and it increased rapidly after 5 years, and the effects of the soil types and texture on it were significant.
China ; Glycyrrhiza uralensis ; chemistry ; growth & development ; Glycyrrhizic Acid ; analysis
4.Research of seed quality grading of Glycyrrhiza uralensis.
Qun SUN ; Li-Gang YANG ; Zi-Mian DING ; Jian-Hua WANG ; Bao-Qi SUN
China Journal of Chinese Materia Medica 2008;33(10):1126-1129
OBJECTIVETo formulate the seed quality grading standard of Glycyrrhiza uralensis.
METHODThousand-grain weight, seed moisture, germination rate, purity of G. uralensis seed samples from 24 regions were tested. Through statistical analysis, the key indicator and the reference indicators for seed quality grading were defined.
RESULTGermination percentage was the primary indicator of seed quality grading, thousand-grain weight, cleanliness and moisture content were important reference indicators.
CONCLUSIONThe seed quality of each grade should reach the following requirements: for first grade seeds, germination percentage > or = 85% , purity > or = 92%, thousand-grain weight > or = 13 g, seed moisture < or = 11%; for second grade seeds, germination percentage 75%-85%, purity 83%-92%, thousand-grain weight 11-13 g, seed moisture < or = 11%; for third grade seeds, germination percentage 65%-75%, purity 74%-83%, thousand-grain weight 9-11 g, seed moisture < or = 11%.
Germination ; Glycyrrhiza uralensis ; chemistry ; classification ; physiology ; Quality Control ; Seeds ; chemistry ; classification ; physiology
5.Analysis of broad-sense heritability and genetic correlation of production and content of glycyrrhizin of annual Glycyrrhiza uralensis.
Shengli WEI ; Wenquan WANG ; Changli LIU ; Jiyong WANG ; Ruifeng ZHANG ; Minbin SUN
China Journal of Chinese Materia Medica 2012;37(5):553-557
OBJECTIVETo estimate the broad-sense heritability of the production of Glycyrrhiza uralensis and the content of glycyrrhizin as well as the genetic relationship of various growth indexes and biomass indexes, and provide the scientific basis for establishment of high quality licorice cultivate technology system.
METHODThe randomized method was used to assign the provenance trial, the content of glycyrrhizin was determined by HPLC, and the method of classic genetics was applied to estimate the broad-sense heritability and genetic correlation coefficient.
RESULT AND CONCLUSIONThe content of glycyrrhizin is influenced by the growth environment and gene, but the growth environment is the dominant factor. The estimated result of single sites about broad-sense heritability (h2) showed that the production of G. uralensis (W(u)) and the content of glycyrrhizin was controlled by gene which the broad-sense heritability was 0.663 2, 0.751 1 respectively, they had some potential on genetic modification. The results of genetic analysis correlation showed that the plant height and the stem diameter was positive (P < 0.01) correlated significantly with the production (W(u)) either on phenotype or on genetic, it suggests that the plant height and the stem diameter could be the index above ground to assessment the production of the G. uralensis. The content of glycyrrhizin had a positive correlation with the number of lateral root (P < 0.05), but it had a negative correlation with the plant height, stem diameter, diameter of root top (D(r)), the total biomass (W(t)) and the biomass underground (W(u)) on inheritance. It is suggested that it was difficult to achieve both high content and high yield simultaneously in the genetic improvement, so we should have a deeply thought about the specific improvement target when making the reformed scheme.
Biomass ; Glycyrrhiza uralensis ; chemistry ; genetics ; growth & development ; Glycyrrhizic Acid ; analysis ; metabolism
6.The expression of SQS1 gene and the content of glycyrrhizic acid of Glycyrrhiza uralensis Fisch. in different concentrations of Mn2+.
Acta Pharmaceutica Sinica 2015;50(1):111-117
The transplants of one-year-old Glycyrrhiza uralensis Fisch. were subjected to five concentrations of MnSO4-H2O (0, 1.81, 18.1, 36.2 and 54.3 mg·L(-1)) culturing in vermiculite. qRT-PCR and HPLC were respectively used to measure the relative expression of SQS1 gene and the content of glycyrrhizic acid of G. uralensis in different concentrations of MnSO4·H2O. This is to explore discuss the effects of the expression of SQS1 gene and the accumulation of glycyrrhizic acid by Mn treatment. The results showed both the expression of SQS1 gene and the content of glycyrrhzic acid of G. uralensis tended to rise after the fall of the first with the increase of concentration of Mn treatment. And they were of very significant positive correlation (P<0.01, r=0.737). Relative expression of SQS1 gene reached the highest 7.90 under 18.1 mg·L(-1) MnSO4·H2O treatment. It was very significantly different between 18.1 mg·L(-1) concentration of MnSO4·H2O treatment and CK (0 mg·L(-1)), 1.81, 36.2 and 54.3 mg·L(-1) (P<0.01), and 1.75, 1.37, 1.37, 2.33 times respectively. The content of glycyrrhizic acid reached the highest under 1.81 and 18.1 mg·L(-1) MnSO4·H2O treatment, and there were not significant difference (P>0.05). It was very significantly different between them and other concentrations of MnSO4·H2O treatment (P<0.01). This study suggests the appropriate concentration of Mn treatment could certain promote the expression of SQS1 gene and the accumulation of glycyrrhizic acid of G. uralensis.
Chromatography, High Pressure Liquid
;
Genes, Plant
;
Glycyrrhiza uralensis
;
chemistry
;
genetics
;
Glycyrrhizic Acid
;
analysis
;
Manganese
7.Comparative study of water characteristic components of Glycyrrhiza uralensis from three geographical regions by chemical pattern recognition combined with muti-component qualitative and quantitative analysis.
Yun-Feng ZHENG ; Wei-Ping DUAN ; Yang YANG ; Zhi-Yu XU ; Cun-Yu LI ; Li-Hong CHEN ; Gou-Ping PENG
China Journal of Chinese Materia Medica 2019;44(12):2544-2551
Thirty-two batches of cultivated and wild Glycyrrhiza uralensis were obtained from three geographical regions. Comparative study of water characteristic components of G. uralensis from three geographical origins was conducted by PCA,OPLS-DA chemical pattern recognition combined with LC-TOF/MS and muti-component analysis. The similarity of fingerprints of 32 batches of medicinal materials ranged from 0. 903 to 0. 999. Patterns recognition could be used to distinguish cultivated G. uralensis in Gansu and Xinjiang areas from cultivated and wild plants in Inner Mongolia. Then a total of thirty-one common constituents were identified by LC-TOF/MS analysis coupled with standard compounds information. The contents of four flavonoid glycosides and five saponins were determinated by HPLC and compared using One-way ANOVA. The results showed that there was no significant difference in the contents of 5 triterpenoid saponins among the three regions,but the contents of 4 flavonoid saponins showed the trend of Inner Mongolia >Gansu≈Xinjiang( P<0. 05). In the same Inner Mongolia region,the contents of 4 flavonoid glycosides and 5 triterpenoid saponins in wild plant was significantly higher than that in cultivated plants( P<0. 01). In addition,the contents of liquiritin,isoliquiritin,licorice-saponin A_3,22β-acetoxyl-glycyrrhizic acid and uralsaponin B in Gansu and Xinjiang were obviously lower than those in Inner Mongolia,but the contents of glycyrrhizic acid,the main component of G. uralensis,were not different in the three geographical regions. In Inner Mongolia,the contents of liquiritin,isoliquiritin,licorice-saponin A_3,licorice-saponin G_2 and glycyrrhizic acid in wild plants were significantly higher than those in cultivated plants. In conclusion,qualitative/quantitative analysis of multi-index components combined with pattern recognition could effectively evaluate the quality of cultivated and wild licorice in different regions. It was helpful for us to understand the reality of licorice in different regions,and provided scientific basis for the development and comprehensive utilization of licorice resources.
China
;
Geography
;
Glycyrrhiza uralensis
;
chemistry
;
Glycyrrhizic Acid
;
analysis
;
Plant Extracts
;
analysis
;
Saponins
;
analysis
;
Water
8.HPLC fingerprint of glycyrrhizea radix et rhizoma praeparata cum melle.
Lei SUN ; Yong JIN ; Xiao-Qing LIU ; Shan-Yi QIAO ; Song GAO ; Yan-Zhong CHE
China Journal of Chinese Materia Medica 2014;39(11):2056-2059
The chromatographic fingerprint was established by eluting with the mobile phase consisted of acetonitrile and 0.2% formic acid water on an Agilent TC-C18 (2) column (4.6 mm x 250 mm, 5 microm). Six chromatographic peaks were identified by HPLC-MS/MS method. Ten batches of Glycyrrhizea Radix et Rhizoma Praeparata Cum Melle were determined, and the similarity was arranged from 0.72 to 0.99. Good precision, stability and repeatability were obtained, and this study provides a reference for the quality control of Glycyrrhizea Radix et Rhizoma Praeparata Cum Melle.
China
;
Chromatography, High Pressure Liquid
;
methods
;
Drugs, Chinese Herbal
;
chemistry
;
Glycyrrhiza uralensis
;
chemistry
;
Mass Spectrometry
;
Quality Control
;
Rhizome
;
chemistry
9.Pharmacokinetics of compatible effective components of Mahuang Decoction in febrile rats.
Jia-Yang WAN ; Yan-Fang TIAN ; Hai-Tong WAN ; Li YU ; Hui-Fen ZHOU ; Chang LI ; Yu HE
China Journal of Chinese Materia Medica 2019;44(10):2149-2155
In the present paper,after the febrile rat model was prepared by injecting yeast,orthogonally compatible effective components from prescription drugs of Mahuang Decoction( Ephedra sinica total alkaloids,Cinnamomum cassia essential oil,amygdalin,Glycyrrhiza uralensis total flavonoids+G. uralensis total saponins) with nine different dosage ratios were given by gavage administration.The plasma concentrations of main active ingredients including ephedrine hydrochloride,pseudoephedrine hydrochloride,methylephedrine hydrochloride,cinnamic acid,amygdalin,liquritin and glycyrrhizin at different time points were analyzed by liquid chromatograph mass spectrometer( LC-MS). Based on the pharmacokinetic parameters of non-compartmental model,the area under curve of total quantum( AUCt) and the mean chromatographic retention time of total quantum( MRTt) were further calculated,in order to evaluate the effect of compatibility on the total statistical moment parameters. The results showed that the pharmacokinetic characteristics of main active components in febrile rats were significantly different after treatment with orthogonally compatibility of E. sinica total alkaloids,C.cassia essential oil,amygdalin,G. uralensis total flavonoids and G. uralensis total saponins. Orthogonal analysis confirmed that different compatibility components had different effects on the total statistical moment parameters. The contribution of effective components of Mahuang Decoction to AUCtwas as follows in a descending order: E. sinica total alkaloids>C. cassia essential oil>amygdalin>G. uralensis total flavonoids+G. uralensis total saponin,while the contribution to MRTtwas: E. sinica total alkaloids >G. uralensis total flavonoids+G. uralensis total saponin>amygdalin>C. cassia essential oil. The E. sinica total alkaloid had the greatest effects on both of the above parameters,and the optimal combination was A_3B_3C_2D_1 for AUCt,and A_1B_1C_1D_1 for MRTt.
Animals
;
Drugs, Chinese Herbal
;
pharmacokinetics
;
Ephedra sinica
;
chemistry
;
Glycyrrhiza uralensis
;
chemistry
;
Oils, Volatile
;
pharmacokinetics
;
Phytochemicals
;
pharmacokinetics
;
Rats
10.Selective adsorption of multi-walled carbon nanotubes with liquiritin and isoliquiritin.
Bo HAN ; Qing-nuan LI ; Sheng-wei WU ; Jun-gang LI ; Wen CHEN ; Wen-xin LI
Acta Pharmaceutica Sinica 2007;42(11):1222-1226
Selective adsorption of active ingredients liquiritin and isoliquiritin from Glycyrrhiza uralensis Fisch with multi-walled carbon nanotubes (MWNTs) has been studied. Distribution coefficients of liquiritin between ethanol solvent and r-MWNTs or o-MWNTs in 293K is 37.5 and 43.3, while the distribution coefficients of isoliquiritin between ethanol solvent and r-MWNTs or o-MWNTs is 717 and 1080, respectively. It was indicated that the distribution coefficient of isoliquiritin adsorbed by MWNTs was much larger than that of liquiritin, and oxidation treatment of MWNTs could obviously enhance their adsorption ability. The possible reasons that MWNTs can selectively adsorb isoliquiritin other than liquiritin were discussed on the bases of molecular structure of the active ingredients and their interaction with nanotubes.
Adsorption
;
Chalcone
;
analogs & derivatives
;
chemistry
;
isolation & purification
;
Flavanones
;
chemistry
;
isolation & purification
;
Glucosides
;
chemistry
;
isolation & purification
;
Glycyrrhiza uralensis
;
chemistry
;
Nanotubes, Carbon
;
chemistry
;
Plants, Medicinal
;
chemistry