1.Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity.
Jing YIN ; Zheng YANG ; Yong-Ping CAO ; Zi-Gang GE
Chinese Medical Journal 2011;124(24):4245-4253
BACKGROUNDThere is a difficulty in evaluating the in vivo functionality of individual chondrocytes, and there is much heterogeneity among cartilage affected by osteoarthritis (OA). In this study, in vitro cultured chondrocytes harvested from varying stages of degeneration were studied as a projective model to further understand the pathogenesis of osteoarthritis.
METHODSCartilage of varying degeneration of end-stage OA was harvested, while cell yield and matrix glycosaminoglycan (GAG) content were measured. Cell morphology, proliferation, and gene expression of collagen type I, II, and X, aggrecan, matrix metalloproteinase 13 (MMP-13), and ADAMTS5 of the acquired chondrocytes were measured during subsequent in vitro culture.
RESULTSBoth the number of cells and the GAG content increased with increasing severity of OA. Cell spreading area increased and gradually showed spindle-like morphology during in vitro culture. Gene expression of collagen type II, collagen type X as well as GAG decreased with severity of cartilage degeneration, while expression of collagen type I increased. Expression of MMP-13 increased with severity of cartilage degeneration, while expression of ADAMTS-5 remained stable. Expression of collagen type II, X, GAG, and MMP-13 substantially decreased with in vitro culture. Expression of collagen type I increased with in vitro cultures, while expression of ADAMTS 5 remained stable.
CONCLUSIONSExpression of functional genes such as collagen type II and GAG decreased during severe degeneration of OA cartilage and in vitro dedifferentiation. Gene expression of collagen I and MMP-13 increased with severity of cartilage degeneration.
ADAM Proteins ; ADAMTS5 Protein ; Cartilage ; pathology ; Cell Differentiation ; genetics ; physiology ; Cells, Cultured ; Chondrocytes ; metabolism ; Collagen Type II ; genetics ; Collagen Type X ; genetics ; Glycosaminoglycans ; metabolism ; Humans ; Matrix Metalloproteinase 13 ; genetics ; Osteoarthritis ; genetics ; pathology
2.Snapshot of degenerative aging of porcine intervertebral disc: a model to unravel the molecular mechanisms.
Hongsik CHO ; Sang Hyug PARK ; Sangmin LEE ; Miji KANG ; Karen A HASTY ; Song Ja KIM
Experimental & Molecular Medicine 2011;43(6):334-340
Larger animal models, such as porcine, have been validated as appropriate models of the human disc with respect to biomechanics and biochemistry. They are advantageous for research as the models are relatively straightforward to prepare and easily obtainable for research to perform surgical techniques. The intention of this study was to quantitatively analyze gene expression for collagen and proteoglycan components of the extracellular matrix and for collagenase (MMP-1) in porcine discs of varying ages (Newborn; 2-3weeks, Mature; 6-9 month, Older; 2-3 years). In this study, we observed that the cell number and GAG (glycosaminoglycan) formation dramatically decreased with aging. Also, gene expression in the annulus fibrosus (AF) and nucleus pulposus (NP) cells changed with aging. The level of MMP-1 mRNA increased with age and both type I, II collagens decreased with age. The level of aggrecan mRNA was highest in the mature group and decreased significantly with aging. In the mature group, MMP-1 expression was minimal compared to the newborn group. In AF cells, type II collagen was expressed at a high level in the mature group with a higher level of aggrecan, when aged NP showed a decrease in type II collagen. The model of IVD degeneration in the porcine disc shows many changes in gene expression with age that have been previously documented for human and may serve as a model for studying changes in IVD metabolism with age. We concluded that the porcine model is excellent to test hypotheses related to disc degeneration while permitting time-course study in biologically active systems.
Age Factors
;
Aggrecans/genetics/metabolism
;
Aging/genetics/*metabolism
;
Animals
;
Animals, Newborn
;
Collagen Type I/genetics/metabolism
;
Collagen Type II/genetics/metabolism
;
Glycosaminoglycans/genetics/metabolism
;
Humans
;
Intervertebral Disk Degeneration/genetics/*metabolism
;
Matrix Metalloproteinase 1/genetics/*metabolism
;
*Models, Animal
;
Reverse Transcriptase Polymerase Chain Reaction
;
Spinal Cord/*metabolism/pathology
;
Swine
3.The First Korean Case of Mucopolysaccharidosis IIIC (Sanfilippo Syndrome Type C) Confirmed by Biochemical and Molecular Investigation.
Hee Jae HUH ; Ja Young SEO ; Sung Yoon CHO ; Chang Seok KI ; Soo Youn LEE ; Jong Won KIM ; Hyung Doo PARK ; Dong Kyu JIN
Annals of Laboratory Medicine 2013;33(1):75-79
Mucopolysaccharidosis (MPS) III has 4 enzymatically distinct forms (A, B, C, and D), and MPS IIIC, also known as Sanfilippo C syndrome, is an autosomal recessive lysosomal storage disease caused by a deficiency of heparan acetyl-CoA:alpha-glucosaminide N-acetyltransferase (HGSNAT). Here, we report a case of MPS IIIC that was confirmed by molecular genetic analysis. The patient was a 2-yr-old girl presenting with skeletal deformity, hepatomegaly, and delayed motor development. Urinary excretion of glycosaminoglycan (GAG) was markedly elevated (984.4 mg GAG/g creatinine) compared with the age-specific reference range (<175 mg GAG/g creatinine), and a strong band of heparan sulfate was recognized on performing thin layer chromatography. HGSNAT enzyme activity in leukocytes was 0.7 nmol/17 hr/mg protein, which was significantly lower than the reference range (8.6-32 nmol/17 hr/mg protein). PCR and direct sequencing of the HGSNAT gene showed 2 mutations: c.234+1G>A (IVS2+1G>A) and c.1150C>T (p.Arg384*). To the best of our knowledge, this is the first case of MPS IIIC to be confirmed by clinical, biochemical, and molecular genetic findings in Korea.
Acetyltransferases/*genetics
;
Asian Continental Ancestry Group/*genetics
;
Base Sequence
;
Child, Preschool
;
Chromatography, Thin Layer
;
Female
;
Glycosaminoglycans/urine
;
Heparitin Sulfate/chemistry/metabolism
;
Humans
;
Leukocytes/immunology/metabolism
;
Mucopolysaccharidosis III/*diagnosis/genetics/radiography
;
Mutation
;
Republic of Korea
;
Sequence Analysis, DNA
4.Age-related changes in growth and metabolism function of human costal chondrocytes cultured in vitro.
Yan ZHANG ; Gang CHAI ; Wei LIU ; Lei CUI ; Yi-lin CAO
Chinese Journal of Plastic Surgery 2004;20(5):372-376
OBJECTIVETo investigate the expressive changes of collagen I, II and aggrecan during the aging of the human costal chondrocytes cultured in vitro, in order to select the best chondrocytes for cartilage engineering.
METHODSThe human costal chondrocytes from the different passages (P1-P5) were harvested. The morphological changes and cell proliferation rate were observed, and the quantity of glycosaminoglycans (GAGs) was examined in each passage with alcian blue precipitation. The expression of collagen I, II and aggrecan was measured with immunohistochemistry and RT-PCR method.
RESULTSFrom the third passage, the human costal chondrocytes were transformed into fibroblast-like cell morphology; and the GAGs content in each passage was decreased and became significantly low in the third passage. The expression of the collagen I, II was consistent in the protein level with that in the mRNA level. Before the second passage, the expression of collagen II was high while the collagen I was low. After the second passage, the expression of collagen II decreased while the collagen I increased. The expression of aggrecan was high before the third passage, and then became low in the fourth passage.
CONCLUSIONWith the examinations of the cell proliferating rate and cell functions in human chondrocytes cultured in vitro, the chondrocytes of the second passage seem suitable for human cartilage engineering.
Aggrecans ; Cell Division ; physiology ; Cells, Cultured ; Cellular Senescence ; physiology ; Chondrocytes ; cytology ; metabolism ; physiology ; Collagen ; genetics ; metabolism ; Extracellular Matrix Proteins ; genetics ; metabolism ; Glycosaminoglycans ; genetics ; metabolism ; Humans ; Immunohistochemistry ; Lectins, C-Type ; Proteoglycans ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Time Factors
5.Construction of self-assembled cartilage tissue from bone marrow mesenchymal stem cells induced by hypoxia combined with GDF-5.
Hong-Tao TIAN ; Bo ZHANG ; Qing TIAN ; Yong LIU ; Shu-Hua YANG ; Zeng-Wu SHAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):700-706
It is widely known that hypoxia can promote chondrogenesis of human bone marrow derived mesenchymal stem cells (hMSCs) in monolayer cultures. However, the direct impact of oxygen tension on hMSC differentiation in three-dimensional cultures is still unknown. This research was designed to observe the direct impact of oxygen tension on the ability of hMSCs to "self assemble" into tissue-engineered cartilage constructs. hMSCs were cultured in chondrogenic medium (CM) containing 100 ng/mL growth differentiation factor 5 (GDF-5) at 5% (hypoxia) and 21% (normoxia) O2 levels in monolayer cultures for 3 weeks. After differentiation, the cells were digested and employed in a self-assembly process to produce tissue-engineered constructs under hypoxic and normoxic conditions in vitro. The aggrecan and type II collagen expression, and type X collagen in the self-assembled constructs were assessed by using immunofluorescent and immunochemical staining respectively. The methods of dimethylmethylene blue (DMMB), hydroxyproline and PicoGreen were used to measure the total collagen content, glycosaminoglycan (GAG) content and the number of viable cells in each construct, respectively. The expression of type II collagen and aggrecan under hypoxic conditions was increased significantly as compared with that under normoxic conditions. In contrast, type X collagen expression was down-regulated in the hypoxic group. Moreover, the constructs in hypoxic group showed more significantly increased total collagen and GAG than in normoxic group, which were more close to those of the natural cartilage. These findings demonstrated that hypoxia enhanced chondrogenesis of in vitro, scaffold-free, tissue-engineered constructs generated using hMSCs induced by GDF-5. In hypoxic environments, the self-assembled constructs have a Thistological appearance and biochemical parameters similar to those of the natural cartilage.
Aggrecans
;
genetics
;
metabolism
;
Bone Marrow Cells
;
drug effects
;
metabolism
;
Cartilage
;
cytology
;
metabolism
;
Cell Differentiation
;
drug effects
;
genetics
;
Cell Hypoxia
;
Cells, Cultured
;
Chondrogenesis
;
drug effects
;
genetics
;
Collagen Type II
;
genetics
;
metabolism
;
Collagen Type X
;
metabolism
;
Female
;
Gene Expression
;
drug effects
;
Glycosaminoglycans
;
metabolism
;
Growth Differentiation Factor 5
;
pharmacology
;
Humans
;
Immunohistochemistry
;
Male
;
Mesenchymal Stromal Cells
;
drug effects
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tissue Engineering
;
methods
6.Antithrombotic mechanisms of holothurian glycosaminoglycan extracted from sea cucumber.
Wei-Zhang SHEN ; Rong-Fu ZHOU ; Xue-Feng WANG ; Qiu-Lan DING ; Hong-Li WANG
Chinese Journal of Hematology 2006;27(9):579-583
OBJECTIVETo investigate the antithrombotic mechanisms of holothurian glycosaminoglycan (GAG) extracted from sea cucumber.
METHODSHuman endothelial cell line EA. hy926 cells were treated with 10 mg/L GAG or 10U/mL unfractionated heparin (UFH) by short-term (15 min - 2 h) and longer-time incubation (6 h - 48 h). Different doses of GAG were used to stimulate EA. hy926. Released free tissue factor pathway inhibitor(TFPI) was determined by ELISA assay. TFPI expression was investigated by immunofluorescent method and TFPI mRNA level by real-time PCR. In a 96-wells microtitre plate, pooled normal plasma containing different concentrations of GAG was allowed to clot by addition of thrombin and calcium chloride, fibrinolysis was induced by addition of t-PA. TRR (TAFI-related retardation of clot lysis) was used to assess thrombin-activatable fibrinolysis inhibitor(TAFI) functional activity.
RESULTSGAG increased TFPI synthesis, expression and secretion in a dose- and time dependent manner. GAG at low concentrations could lengthen while at intermediate concentrations could shorten clot lysis times significantly as compared to control values. TRR was dose-dependently decreased on addition of GAG.
CONCLUSIONSGAG increases TFPI synthesis, expression and secretion of endothelial cells. GAG at intermediate concentrations significantly affects clot stability of a developing clot by means of diminishing TAFI activation.
Animals ; Carboxypeptidase B2 ; antagonists & inhibitors ; Cell Line ; Dose-Response Relationship, Drug ; Endothelial Cells ; drug effects ; metabolism ; Glycosaminoglycans ; pharmacology ; Heparin ; pharmacology ; Holothuria ; Humans ; Lipoproteins ; biosynthesis ; genetics ; RNA, Messenger ; genetics ; Tissue Extracts ; pharmacology
7.Role of pilose antler polypeptides on replicative senescence of rat chondrocyte.
China Journal of Orthopaedics and Traumatology 2008;21(7):515-518
OBJECTIVETo observe the function of pilose antler polypeptides (PAP) on replicative senescence of rat chondrocyte subcultivated in vitro by means of PAP intervention and controlled experiment.
METHODSThe 3rd generation chondrocytes were divided into blank group, and PAP groups with three different concentration of PAP which were passaged to the 4th generation. Meanwhile, the 2nd generation of chontrocytes were used as control group. The chondrocytes in different groups were detected with the method of histochemistry for S-A-beta-gal, flow cytometry for cell life cycle and proliferation index, alcian blue test for the content and structure of GAG of ECM, and RT-PCR for type II collagen and Aggrecan. Then PAP's function was observed regarding the appearance and functional status in the process of chondrocyte's senescence.
RESULTSPAP significantly inhibited chondrocyte's express of S-A-beta-gal (P<0.01), promoted chondrocyte's proliferation (P<0.01), reduced cell content on G1 phase, enhanced the content of GAG, type II collagen and Aggrecan of ECM (P<0.01).
CONCLUSIONPAP can significantly resist rat chondrocyte senescence occurred in subcultivation.
Aggrecans ; genetics ; Animals ; Antlers ; chemistry ; Cell Cycle ; drug effects ; Cells, Cultured ; Cellular Senescence ; drug effects ; Chondrocytes ; cytology ; drug effects ; metabolism ; Collagen Type II ; genetics ; Glycosaminoglycans ; analysis ; Male ; Peptides ; pharmacology ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley
8.Transcriptional Regulation of Proteoglycans and Glycosaminoglycan Chain-synthesizing Glycosyltransferases by UV Irradiation in Cultured Human Dermal Fibroblasts.
Jeong Eun SHIN ; Jang Hee OH ; Yeon Kyung KIM ; Ji Yong JUNG ; Jin Ho CHUNG
Journal of Korean Medical Science 2011;26(3):417-424
Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm2 of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, beta1,3-glucuronyltransferase-1, beta1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of beta1,3-galactosyltransferase-6, beta1,4-galactosyltransferase-3, -7, beta-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.
Cell Line
;
Fibroblasts/metabolism/radiation effects
;
Gene Expression Regulation/radiation effects
;
Glucuronosyltransferase/genetics/radiation effects
;
Glycosaminoglycans/*biosynthesis/chemistry
;
Glycosyltransferases/genetics/*metabolism
;
Humans
;
Hyaluronic Acid/biosynthesis
;
Hyaluronoglucosaminidase/genetics/radiation effects
;
Polymerase Chain Reaction
;
Proteoglycans/*biosynthesis/genetics/radiation effects
;
RNA, Messenger/analysis/genetics
;
Skin/*metabolism/radiation effects
;
Transcription, Genetic/radiation effects
;
*Ultraviolet Rays
9.SKI306X inhibition of glycosaminoglycan degradation in human cartilage involves down-regulation of cytokine-induced catabolic genes.
Choong Hyeok CHOI ; Tae Hwan KIM ; Yoon Kyoung SUNG ; Chan Bum CHOI ; Young In NA ; Hunseung YOO ; Jae Bum JUN
The Korean Journal of Internal Medicine 2014;29(5):647-655
BACKGROUND/AIMS: SKI306X, a mixed extract of three herbs, Clematis mandshurica (CM), Prunella vulgaris (PV), and Trichosanthes kirilowii (TK), is chondroprotective in animal models of osteoarthritis (OA). The objectives of this study were to investigate its effect on interleukin (IL)-1beta-induced degradation of glycosaminoglycan (GAG) and the basis of its action in human OA cartilage, as well as to screen for the presence of inhibitors of matrix metalloproteinase (MMP)-13 and a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS)-4 in SKI306X and its component herbs, as well as in fractions from SKI306X. METHODS: Human OA chondrocytes and cartilage explants were obtained during total knee replacements and incubated with IL-1beta +/- oncostatin M with or without SKI306X or its component herb extracts. GAG degradation was assayed in cartilage explants using a commercial kit. Expression of genes involved in cartilage destruction was measured by real-time polymerase chain reaction using chondrocyte RNA. SKI306X was fractionated by preparative liquid chromatography to test for the presence of inhibitors of MMP-13 and ADAMTS-4. RESULTS: SKI306X and PV inhibited IL-1beta-induced GAG release from cartilage explants, and SKI306X, CM, PV, and TK inhibited IL-1beta-induced MMP gene expression. Unexpectedly, SKI306X greatly stimulated IL-1beta + oncostatin M-induced ADAMTS-4 gene expression, probably due to its TK component. Some fractions of SKI306X also inhibited ADAMTS-4 activity. CONCLUSIONS: SKI306X and its herbal components inhibit GAG degradation and catabolic gene expression in human OA chondrocytes and cartilage explants. SKI306X likely also contains one or more ADAMTS-4 inhibitor.
ADAM Proteins/antagonists & inhibitors
;
Cartilage, Articular/*drug effects/*metabolism
;
Cells, Cultured
;
Chondrocytes/drug effects/metabolism
;
Down-Regulation/drug effects
;
Drugs, Chinese Herbal/*pharmacology
;
Glycosaminoglycans/*metabolism
;
Humans
;
Interleukin-1beta/metabolism
;
Matrix Metalloproteinase 13/metabolism
;
Matrix Metalloproteinase Inhibitors/pharmacology
;
Oncostatin M/metabolism
;
Osteoarthritis, Knee/drug therapy/genetics/metabolism
;
Procollagen N-Endopeptidase/antagonists & inhibitors
10.Analysis of clinical features and arylsulfatase B gene mutation in thirteen Chinese children with mucopolysaccharidosis type VI.
Jipeng ZHENG ; Yonglan HUANG ; Xiaoyuan ZHAO ; Huiying SHENG ; Jing CHENG ; Zhihong ZHOU ; Xiuzhen LI ; Xiaojian MAO ; Li LIU
Chinese Journal of Pediatrics 2014;52(6):403-408
OBJECTIVEMucopolysaccharidosis type VI (MPS VI) or Maroteaux-Lamy syndrome is an autosomal recessive lysosomal storage disease caused by a deficiency of arylsulfatase B(ARSB), which is required in the degradation of dermatan sulfate and chondroitin sulfate. The deficiency of ARSB leads to an accumulation of dermatan sulfate and chondroitin sulfate in lysosomes and gross excretion in the urine.Few articles about clinical study and ARSB gene mutation analysis of Chinese MPS VI patients were published. This study aimed to explore the clinical features and characteristics of ARSB gene in Chinese children with MPS VI.
METHODThirteen children were diagnosed as MPS VI by ARSB enzyme activity determination during the period from 2009 to 2013. Their clinical features, radiological findings and urine glycosaminoglycan (GAG) levels were retrospectively reviewed. Direct sequencing was used to identify any mutation in the ARSB gene.
RESULTThirteen children were diagnosed at the average age of (3.9 ± 2.2) years with 6 male and 7 female. All of these children presented with severe form and onset at an early age of (1.5 ± 0.8) years.Other clinical features included coarse facies, short stature, skeleton deformity, corneal clouding, hepatosplenomegaly with normal intelligence. The radiological findings in all children were characteristic of dysostosis multiplex, like abnormal development of vertebral bodies of the spine, campylorrhachia and paddle-shaped widened ribs. The MRI in case 2 showed cervical cord compression and multiple cysts degeneration in the corona radiate, cella lateralis and callosum.High urine GAG levels were detected, (307.10 ± 112.14) mg/L (Normally below 70 mg/L) and (722.28 ± 245.68) µg/mg creatinine. The ARSB enzyme activity in leukocytes was low, (13.29 ± 6.22) nmol/(mg×h) [Normal range (47-169) nmol/(mg×h)] by fluorogenic assay and (0.24 ± 0.18) U/g [Normal range (1.01-11.47) U/g] by colorimetric assay. A total of 11 mutations were identified by molecular analysis, including seven previously reported mutations (p.L72R, p.G167R, p.G303E, p.F399L, p. T442M, p.Y255X and p.R327X) and four novel mutations (p.Y175D, p.S403X, p.S464X and large deletion including ex. 2, 3). The c.1197C>G (p.F399L) mutation was the most common mutation in this study (31%).
CONCLUSIONThe severe form of MPS VI is characterized by early onset and rapid illness progression. Both the radiological findings and increased urine GAG are important clues to diagnose MPS VI.Large decrease or absence of ARSB activity is diagnostic for MPS VI.Four novel mutations of ARSB gene were identified. The reported mutation c.1197C>G (p.F399L) was the hot-spot mutation in this study.
Bone and Bones ; diagnostic imaging ; pathology ; Brain ; pathology ; Child ; Child, Preschool ; Exons ; genetics ; Female ; Glycosaminoglycans ; urine ; Humans ; Infant ; Magnetic Resonance Imaging ; Male ; Mucopolysaccharidosis VI ; diagnosis ; enzymology ; genetics ; Mutation ; N-Acetylgalactosamine-4-Sulfatase ; genetics ; metabolism ; Polymerase Chain Reaction ; Radiography ; Retrospective Studies ; Sequence Analysis, DNA