1.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
2.Preparation and identification of monoclonal antibodies against cat allergen Fel d 1.
Linying CAI ; Zichen ZHANG ; Zhuangli BI ; Shiqiang ZHU ; Miao ZHANG ; Yiming FAN ; Jingjie TANG ; Aoxing TANG ; Huiwen LIU ; Yingying DING ; Chen LI ; Yingqi ZHU ; Guijun WANG ; Guangqing LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):348-354
Objective Currently, there is no commercially available quantitative detection kit for the main Felis domestic allergen (Fel d 1) in China. To establish a rapid detection method for Fel d 1, this study aims to prepare monoclonal antibodies against Fel d 1 protein. Methods The codon preference of Escherichia coli was utilized to optimize and synthesize the Fel d 1 gene. The prokaryotic expression plasmid pET-28a-Fel d 1 was constructed and used to express and purify the recombinant Fel d 1 protein. Subsequently, the recombinant protein was immunized into BALB/c mice and monoclonal antibodies (mAbs) were prepared by the hybridoma technique. An indirect ELISA was established using the recombinant Fel d 1 as the coating antigen, and hybridoma cell lines were screened for positive clones. The specificity and antigenic epitopes of the mAbs were confirmed by Western blot analysis. Finally, the selected hybridoma cells were injected into the peritoneal cavities of BALB/c mice for large-scale monoclonal antibody production. Results The recombinant plasmid pET-28a-Fel d 1 was successfully constructed, and soluble Fel d 1 protein was obtained after optimizing the expression conditions. Western blot and antibody titer assays confirmed the successful isolation of two hybridoma cell lines, 7D11 and 5H4, which stably secreted mAbs specific to Fel d 1. Antibody characterization revealed that the 5H4 mAb was of the IgG2a subtype and could recognize the amino acid region 105-163 of Fel d 1, while the 7D11 mAb was the IgG1 subtype and could recognize the amino acid region 1-59. Conclusion The high-purity recombinant Fel d 1 protein produced in this study provides a promising alternative for clinical immunotherapy of cat allergies. Furthermore, the monoclonal antibody prepared in this experiment lays a material foundation for the in-depth study of the biological function of Fel d 1 and the development of ELISA detection.
Animals
;
Antibodies, Monoclonal/biosynthesis*
;
Mice, Inbred BALB C
;
Cats
;
Mice
;
Allergens/genetics*
;
Glycoproteins/genetics*
;
Enzyme-Linked Immunosorbent Assay
;
Hybridomas/immunology*
;
Recombinant Proteins/genetics*
;
Female
;
Antibody Specificity
3.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
4.Facilitating microglial phagocytosis by which Jiawei Xionggui Decoction alleviates cognitive impairment via TREM2-mediated energy metabolic reprogramming.
Wen WEN ; Jie CHEN ; Junbao XIANG ; Shiqi ZHANG ; Jingru LIU ; Jie WANG ; Ping WANG ; Shijun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):909-919
Triggering receptor expressed on myeloid cells 2 (TREM2)-mediated microglial phagocytosis is an energy-intensive process that plays a crucial role in amyloid beta (Aβ) clearance in Alzheimer's disease (AD). Energy metabolic reprogramming (EMR) in microglia induced by TREM2 presents therapeutic targets for cognitive impairment in AD. Jiawei Xionggui Decoction (JWXG) has demonstrated effectiveness in enhancing energy supply, protecting microglia, and mitigating cognitive impairment in APP/PS1 mice. However, the mechanism by which JWXG enhances Aβ phagocytosis through TREM2-mediated EMR in microglia remains unclear. This study investigates how JWXG facilitates microglial phagocytosis and alleviates cognitive deficits in AD through TREM2-mediated EMR. Microglial phagocytosis was evaluated through immunofluorescence staining in vitro and in vivo. The EMR level of microglia was assessed using high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kits. The TREM2/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway was analyzed using Western blotting in BV2 cells. TREM2-/- BV2 cells were utilized for reverse validation experiments. The Aβ burden, neuropathological features, and cognitive ability in APP/PS1 mice were evaluated using ELISA kits, immunohistochemistry (IHC), and the Morris water maze (MWM) test. JWXG enhanced both the phagocytosis of EMR disorder-BV2 cells (EMRD-BV2) and increased EMR levels. Notably, these effects were significantly reversed in TREM2-/- BV2 cells. JWXG elevated TREM2 expression, adenosine triphosphate (ATP) levels, and microglial phagocytosis in APP/PS1 mice. Additionally, JWXG reduced Aβ-burden, neuropathological lesions, and cognitive deficits in APP/PS1 mice. In conclusion, JWXG promoted TREM2-induced EMR and enhanced microglial phagocytosis, thereby reducing Aβ deposition, improving neuropathological lesions, and alleviating cognitive deficits.
Drugs, Chinese Herbal/pharmacology*
;
Microglia/drug effects*
;
Phagocytosis
;
Cognitive Dysfunction/drug therapy*
;
Metabolic Reprogramming
;
Animals
;
Mice
;
Cell Line
;
Receptors, Immunologic/metabolism*
;
Membrane Glycoproteins/metabolism*
;
Signal Transduction
;
Amyloid beta-Peptides/metabolism*
;
Energy Metabolism
5.Synaptic Vesicle Glycoprotein 2A Slows down Amyloidogenic Processing of Amyloid Precursor Protein via Regulating Its Intracellular Trafficking.
Qian ZHANG ; Xiao Ling WANG ; Yu Li HOU ; Jing Jing ZHANG ; Cong Cong LIU ; Xiao Min ZHANG ; Ya Qi WANG ; Yu Jian FAN ; Jun Ting LIU ; Jing LIU ; Qiao SONG ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(5):607-624
OBJECTIVE:
To reveal the effects and potential mechanisms by which synaptic vesicle glycoprotein 2A (SV2A) influences the distribution of amyloid precursor protein (APP) in the trans-Golgi network (TGN), endolysosomal system, and cell membranes and to reveal the effects of SV2A on APP amyloid degradation.
METHODS:
Colocalization analysis of APP with specific tagged proteins in the TGN, ensolysosomal system, and cell membrane was performed to explore the effects of SV2A on the intracellular transport of APP. APP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expressions, and APP cleavage products levels were investigated to observe the effects of SV2A on APP amyloidogenic processing.
RESULTS:
APP localization was reduced in the TGN, early endosomes, late endosomes, and lysosomes, whereas it was increased in the recycling endosomes and cell membrane of SV2A-overexpressed neurons. Moreover, Arl5b (ADP-ribosylation factor 5b), a protein responsible for transporting APP from the TGN to early endosomes, was upregulated by SV2A. SV2A overexpression also decreased APP transport from the cell membrane to early endosomes by downregulating APP endocytosis. In addition, products of APP amyloid degradation, including sAPPβ, Aβ 1-42, and Aβ 1-40, were decreased in SV2A-overexpressed cells.
CONCLUSION
These results demonstrated that SV2A promotes APP transport from the TGN to early endosomes by upregulating Arl5b and promoting APP transport from early endosomes to recycling endosomes-cell membrane pathway, which slows APP amyloid degradation.
Amyloid beta-Protein Precursor/genetics*
;
Membrane Glycoproteins/genetics*
;
Animals
;
Protein Transport
;
Nerve Tissue Proteins/genetics*
;
Humans
;
Mice
;
Endosomes/metabolism*
;
trans-Golgi Network/metabolism*
6.Engineering of Pichia pastoris for producing glycoproteins with hybrid-type (GlcNAcMan5GlcNAc2) N-glycans.
Hao WANG ; Tiantian WANG ; Bin ZHANG ; Jun WU ; Huifang XU ; Yanru ZHANG ; Kehai LIU ; Bo LIU
Chinese Journal of Biotechnology 2025;41(9):3617-3629
Glycosylation modification is an important post-translational modification of proteins, which participates in regulating protein half-life, biological activity, and immunogenicity, thereby affecting their functions. Glycoproteins expressed in Pichia pastoris predominantly carry high-mannose type glycans, primarily composed of mannose residues, which starkly contrasts with the complex-type glycans synthesized by mammalian cells. This study aims to transform the high mannose glycosylation modification of P. pastoris into a hybrid glycosylation modification similar to that of mammalian cells through genetic engineering technology. We introduced the mannosidase Ⅰ gene (MDSⅠ) from Trichoderma viride and the human β-1,2-N-acetylglucosaminyltransferase I gene (GnTⅠ) into a previously constructed P. pastoris strain (∆och1) capable of producing Man8GlcNAc2 glycans. To precisely regulate the expression of MDSⅠ and GnTⅠ, we designed various promoter combinations, including the strong inducible AOX promoter and the constitutive GAP promoter. The receptor-binding domain (RBD, residues 377-588) of the spike protein from the Middle East respiratory syndrome coronavirus (MERS-CoV) was selected as the reporter protein for this investigation (MERS-RBD). The N-glycosylation profile of MERS-RBD was systematically analyzed using PNGase F digestion coupled with mass spectrometry. The results showed that after the knockout of och1 and the introduction of MDSⅠ and GnTⅠ genes with different promoter combinations, P. pastoris strains capable of producing GlcNAcMan5GlcNAc2 glycans were successfully generated. When the AOX promoter was used to control the MDSⅠ gene and the GAP promoter was used to control the GnTⅠ gene, the engineered strain exhibited the highest proportion of hybrid-type GlcNAcMan5GlcNAc2 glycans, which accounted for 68.38% of the total N-glycosylation. In conclusion, we successfully engineered a P. pastoris strain capable of synthesizing hybrid-type GlcNAcMan5GlcNAc2 glycans, establishing a foundation for subsequent research on the biosynthesis of complex-type N-glycans in P. pastoris.
Glycosylation
;
Glycoproteins/genetics*
;
Polysaccharides/metabolism*
;
N-Acetylglucosaminyltransferases/metabolism*
;
Pichia/metabolism*
;
Humans
;
Mannosidases/metabolism*
;
Genetic Engineering
;
Trichoderma/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales
7.Expression of influenza A H1N1 and H3N2 viruses Mosaic-HA1 antigens and evaluation of its immunogenicity in mice.
Fei HAN ; Pengtao JIAO ; Runshan LIN ; Heqiao LI ; Jianing MA ; Hanzhong PEI ; He ZHANG ; Lei SUN ; Tingrong LUO ; Min ZHENG ; Wenhui FAN ; Wenjun LIU
Chinese Journal of Biotechnology 2024;40(11):4042-4056
Vaccination is the most effective measure for reducing and preventing influenza and related complications. In this study, we analyzed the mutation trend and the antigen dominant site changes of the amino acid sequence of hemagglutinin subunit 1 (HA1) of human influenza A virus (IAV) in the northern hemisphere from 2012 to 2022. According to the HA1 sequences of A/Darwin/6/2021 (H3N2) and A/Wisconsin/588/2019 (H1N1) recommended by the World Health Organization in the 2022 influenza season in northern hemisphere, we employed the mosaic algorithm to design three Mosaic-HA1 antigens through stepwise substitution. Mosaic-HA1 was expressed and purified in 293F cells and then mixed with the alum adjuvant at a volume ratio of 1:1. The mixture was used to immunize BALB/c mice, and the immunogenicity was evaluated. Enzyme-linked immunosorbent assay showed that Mosaic-HA1 induced the production of IgG targeting two types of HA1, the specific IgG titers for binding to H3 protein and H1 protein reached 105 and 103 respectively. The challenge test showed that Mosaic-HA1 protected mice from H3N2 or H1N1. This study designs the vaccines by recombination of major antigenic sites in different subtypes of IAV, giving new insights into the development of multivalent subunit vaccines against influenza.
Animals
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Influenza A Virus, H3N2 Subtype/genetics*
;
Mice, Inbred BALB C
;
Mice
;
Influenza Vaccines/genetics*
;
Hemagglutinin Glycoproteins, Influenza Virus/genetics*
;
Humans
;
Antibodies, Viral/blood*
;
Antigens, Viral/genetics*
;
Immunoglobulin G/immunology*
;
Female
;
Orthomyxoviridae Infections/prevention & control*
;
HEK293 Cells
8.BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models.
Beibei JIANG ; Tong ZHANG ; Minjuan DENG ; Wei JIN ; Yuan HONG ; Xiaotong CHEN ; Xin CHEN ; Jing WANG ; Hongjia HOU ; Yajuan GAO ; Wenfeng GONG ; Xing WANG ; Haiying LI ; Xiaosui ZHOU ; Yingcai FENG ; Bo ZHANG ; Bin JIANG ; Xueping LU ; Lijie ZHANG ; Yang LI ; Weiwei SONG ; Hanzi SUN ; Zuobai WANG ; Xiaomin SONG ; Zhirong SHEN ; Xuesong LIU ; Kang LI ; Lai WANG ; Ye LIU
Frontiers of Medicine 2023;17(6):1170-1185
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Mice
;
Animals
;
Receptors, Tumor Necrosis Factor/physiology*
;
Receptors, OX40
;
Membrane Glycoproteins
;
Ligands
;
Antibodies, Monoclonal/pharmacology*
;
Antineoplastic Agents/pharmacology*
9.Lysosomal membrane protein Sidt2 knockout induces apoptosis of human hepatocytes in vitro independent of the autophagy-lysosomal pathway.
Jiating XU ; Mengya GENG ; Haijun LIU ; Wenjun PEI ; Jing GU ; Mengxiang QI ; Yao ZHANG ; Kun LÜ ; Yingying SONG ; Miaomiao LIU ; Xin HU ; Cui YU ; Chunling HE ; Lizhuo WANG ; Jialin GAO
Journal of Southern Medical University 2023;43(4):637-643
OBJECTIVE:
To explore the regulatory mechanism of human hepatocyte apoptosis induced by lysosomal membrane protein Sidt2 knockout.
METHODS:
The Sidt2 knockout (Sidt2-/-) cell model was constructed in human hepatocyte HL7702 cells using Crispr-Cas9 technology.The protein levels of Sidt2 and key autophagy proteins LC3-II/I and P62 in the cell model were detected using Western blotting, and the formation of autophagosomes was observed with MDC staining.EdU incorporation assay and flow cytometry were performed to observe the effect of Sidt2 knockout on cell proliferation and apoptosis.The effect of chloroquine at the saturating concentration on autophagic flux, proliferation and apoptosis of Sidt2 knockout cells were observed.
RESULTS:
Sidt2-/- HL7702 cells were successfully constructed.Sidt2 knockout significantly inhibited the proliferation and increased apoptosis of the cells, causing also increased protein expressions of LC3-II/I and P62(P < 0.05) and increased number of autophagosomes.Autophagy of the cells reached a saturated state following treatment with 50 μmol/L chloroquine, and at this concentration, chloroquine significantly increased the expressions of LC3B and P62 in Sidt2-/- HL7702 cells.
CONCLUSION
Sidt2 gene knockout causes dysregulation of the autophagy pathway and induces apoptosis of HL7702 cells, and the latter effect is not mediated by inhibiting the autophagy-lysosomal pathway.
Humans
;
Lysosome-Associated Membrane Glycoproteins/metabolism*
;
Autophagy
;
Apoptosis
;
Hepatocytes
;
Lysosomes/metabolism*
;
Chloroquine/pharmacology*
;
Nucleotide Transport Proteins/metabolism*
10.LRG1 inhibits hepatic macrophage activation by enhancing TGF-β1 signaling to alleviate MAFLD in mice.
Longfei XU ; Jing HAN ; Zhe YANG ; Yanping YANG ; Jinhui CHEN ; Xijun WU ; Qi WANG ; Yan HONG
Journal of Southern Medical University 2023;43(7):1164-1171
OBJECTIVE:
To explore the effect of leucine-rich α-2-glycoprotein (LRG1) derived from hepatocytes on activation of hepatic M1 Kupffer cells.
METHODS:
A metabolic dysfunction-associated fatty liver disease (MAFLD) model was established in BALB/c mice by high-fat diet (HFD) feeding for 16 weeks. Oleic acid was used to induce steatosis in primary cultures of mouse hepatocytes. The mRNA and protein expressions of LRG1 in mouse liver tissues and hepatocytes were detected by real-time PCR and Western blotting. Primary hepatic macrophages were stimulated with the conditioned medium (CM) from steatotic hepatocyte along with LRG1 or transforming growth factor-β1 (TGF-β1), or both for 24 h, and the expression levels of inducible nitric oxide synthase (iNOS) was detected with Western botting, and the mRNA expressions of iNOS, chemokine ligand 1 (CXCL-1) and interleukin-1β (IL-1β) were measured by RT-PCR. The MAFLD mice were injected with LRG1 (n=6), TGF-β1 (n=6), or both (n=6) through the caudal vein, and the live tissues were collected for HE staining and immumohistochemical detection of F4/80 expression; the mRNA expressions of iNOS, CXCL-1 and IL-1β in liver tissues were detected using RT-PCR.
RESULTS:
The mRNA and protein expression levels of LRG1 were significantly downregulated in the liver tissues of MAFLD mice and steatotic hepatocytes (P < 0.05). Treatment of the hepatic macrophages with CM from steatosis hepatocytes significantly enhanced the mRNA expression levels of iNOS, CXCL-1 and IL-1β, and these changes were significantly inhibited by the combined treatment with TGF-β1 and LRG1 (P < 0.05). In MAFLD mice, injections with either LRG1 or TGF-β1 alone reduced hepatic lipid deposition and intrahepatic macrophage infiltration, and these effects were significantly enhanced by their combined treatment, which also more strongly inhibited the mRNA expression levels of iNOS, CXCL-1 and IL-1β (P < 0.05).
CONCLUSION
LRG1 inhibits hepatic macrophage infiltration by enhancing TGF-β1 signaling to alleviate fatty liver inflammation in MAFLD mice.
Animals
;
Mice
;
Transforming Growth Factor beta1
;
Macrophage Activation
;
Signal Transduction
;
Non-alcoholic Fatty Liver Disease
;
Culture Media, Conditioned
;
Glycoproteins

Result Analysis
Print
Save
E-mail