1.Expression Changes of β-catenin and P-GSK-3β in Patients with Mantle Cell Lymphoma.
Jin-Shui HE ; Yi-Qun HUANG ; Jian-Ming WENG ; Li-Yun XIAO ; Kai-Zhi WENG ; Xu-Dong MA
Journal of Experimental Hematology 2015;23(2):407-410
OBJECTIVEThis study was purposed to detect the expressions of β-catenin and P-GSK-3 β in Wnt signaling pathway of patients with mantle cell lymphoma(MCL), and investigate its relationship with the pathogenesis of MCL.
METHODSThe expression levels of β -catenin protein and P-GSK-3 protein in mantle cell lymphoma and hyperplastic lymphadenitis were detected by using anti-β-catenin, P-GSK-3β polyclonal antibody and S-P staining technique.
RESULTSThe abnormal expression of β-catenin protein(73.33%) in mantle cell lymphoma group was significantly higher than that (6.7%) in reactive lymph node hyperplasia group (P<0.05); and the positive rate of P-GSK-3 β(66.67%) in mantle cell lymphoma group was significantly higher than that (16.67%) in reactive hyperplasia of lymph node group (P<0.05). Spearman correlation analysis showed that there was obvious positive correlation (R=0.852, P<0.01).
CONCLUSIONThe abnormal high expressions of β-catenin and P-GSK-3 β protein have been confirmed to appeare in mantle cell lymphoma.
Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinase 3 beta ; Humans ; Lymphoma, Mantle-Cell ; Signal Transduction ; Wnt Signaling Pathway ; beta Catenin
3.The role of glycogen synthase kinase-3 beta in the pathogenesis of liver ischemia reperfusion injury.
Feng REN ; Hai-yan ZHANG ; Zheng-fu PIAO ; Su-jun ZHENG ; Yu CHEN ; Zhi-ming WU ; Zhong-ping DUAN
Chinese Journal of Hepatology 2011;19(7):547-551
OBJECTIVETo investigate the role of the key intracellular signaling molecule glycogen synthase kinase-3 beta in the mechanism of liver ischemia reperfusion (IR).
METHODSC57BL/6 mice were subjected to 90 min warm liver cephalad lobe ischemia, followed by various length of reperfusion. Experiment groups included sham control group, liver IRI model group and glycogen synthase kinase-3 beta inhibitor-treated group (SB216763 in DMSO, 25 g/kg, i.p, 2 hour prior to the onset of liver ischemia). The expression of glycogen synthase kinase-3 beta protein was analysed by Western blotting. The serum ALT levels were determined to reflect the function of liver. The affected liver lobes were harvested for histology analysis. The inflammatory gene expression was detected by Quantitative PCR.
RESULTSBy western blot analysis, we found that ischemia itself activated glycogen synthase kinase-3 beta by a significant decrease of its phosphorylation. Glycogen synthase kinase-3 beta inhibitor SB216763-pretreatment ameliorated the liver damages significantly as compared to the controls (sALT: 2046+/-513 U/L vs 5809+/-1689 U/L, P = 0.0153), and suppressed the gene expressions of IL-12, TNFa, IL-1b and IL-6.
CONCLUSIONSThis study demonstrated that the ischemia process modulated liver innate immune activation via a GSK-3-dependent mechanism which favored the development of a pro-inflammation response and lead to liver tissue damages. GSK-3b may be a new therapeutic target to ameliorate liver IRI in transplant patients.
Animals ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Inflammation ; metabolism ; Liver ; metabolism ; pathology ; Male ; Mice ; Mice, Inbred C57BL ; Reperfusion Injury ; metabolism ; pathology
4.Effects of glycogen synthase kinase 3β overexpression in rat and glycogen synthase kinase 3β inhibitor SB-216763 on proliferation of hepatic oval cells.
Jun-qiao ZHONG ; Yuan-kang XIE ; Xiao-ke JI ; Jun-hui FU ; Yang WANG ; Qi-yu ZHANG ; Hong-qi SHI ; Yun-feng SHAN
Chinese Journal of Surgery 2012;50(11):1003-1006
OBJECTIVETo research the effects of glycogen synthase kinase (GSK3β) overexpression and GSK3β inhibitor SB-216763 on the proliferation of hepatic oval cells in rats and its regulatory mechanisms by Wnt signaling pathway.
METHODSThe hepatic oval cells WBF-344 were divided into the blank control group, GSK3β over-expression group, DMSO control group and GSK3β inhibitor groups, while the inhibitor groups set up three concentration gradients, that was 1, 5, 10 µmol/L. Using the GSK3β over-expression lentivirus, which had been identified correctly, and SB-216763 dealt with the cells WBF-344. The cells morphology of each group was observed under the phase contrast inverted microscope, and the expression of fluorescence in the lentivirus-transfected group was observed under the fluorescent microscope. The proliferation of each group cells was tested by CCK8 kits. The cells' apoptosis was detected by AnnexinV-FITC/PI kits. The expression of GSK3β, β-catenin and cyclin D1 were detected by Western blot.
RESULTSThe cells of GSK3β over-expression group were fewer and obvious aging. However, in each inhibitor added group, the cells' division and proliferation was vigorous, and the condition was good. Moreover, the cells' proliferation was getting stronger with the concentration of SB-216763 increasing. A large number of green fluorescence was expressed in the lentivirus-transfected cells. The cells' proliferation in GSK3β over-expression group restrained (t = 7.178, P < 0.01, as compared with control), while the cells' proliferation was vigorous in inhibitor groups (F = 45.030, P < 0.01, as compared with control). Flow Cytometry showed that the cells apoptosis was significant in GSK3β over-expression group. Western blot showed that the expression of GSK3β was increased, while the expression of β-catenin and cyclin D1 was decreased in the over-expression group. The expression of GSK3β had no significant difference among the control group and inhibitor groups. However, the expression of β-catenin and cyclin D1 was significantly increased with the concentration of SB-216763 increasing.
CONCLUSIONSThe overexpression of GSK3β can inhibit the Wnt signaling pathway, thus restrain the cells' proliferation and promotes apoptosis. SB-216763 can activate the Wnt pathway, thus promotes cells' proliferation.
Animals ; Cell Line ; Cell Proliferation ; drug effects ; Cyclin D1 ; metabolism ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Glycogen Synthase Kinases ; metabolism ; Hepatocytes ; drug effects ; Indoles ; pharmacology ; Male ; Maleimides ; pharmacology ; Rats ; Transfection ; Wnt Signaling Pathway ; beta Catenin ; metabolism
5.Butyrate acts as a G-protein-coupled receptor ligand that prevents high glucose-induced amyloidogenesis in N2a cells through the protein kinase B/glycogen synthase kinase-3β pathway.
Yujie XU ; Shufang SHAN ; Xiaoyu WANG ; Lingli LI ; Liang MA ; Jingyuan XIONG ; Ping FU ; Guo CHENG
Chinese Medical Journal 2023;136(19):2368-2370
6.Curcumin induces apoptosis by PTEN/PI3K/AKT pathway in EC109 cells.
Xiu-juan LI ; Yu-zhen LI ; Chun-ting JIN ; Jie FAN ; Hai-jun LI
Chinese Journal of Applied Physiology 2015;31(2):174-177
OBJECTIVETo study the molecular mechanism of curcumin in human esophageal carcinoma cell line (EC109).
METHODSEC109 cells were cultivated in vitro. When 80%-90% confluence was reached, they were treated with curcumin in different concentrations (15-120 µmol/L). The effects on cell proliferation were examined by CCK-8 colorimetry. The ultrastructure of EC109 cells were detected with transmission electron microscope(TEM). The cells apoptosis was observed with laser confocal microscope(LCM) by AnnexinV-FITC/PI double staining. The proteins level of PTEN, AKT, GSK3β and Caspase 3 were tested by flow cytometry(FCM) .
RESULTSCCK-8 test showed that curcumin could inhibit the proliferation of EC109 cells in a time- and concentration-dependent manner. TEM and LCM examinations indicated that curcumin could make EC109 cells apoptosis. The data of FCM showed that curcumin could increase the expression of PTEN, GSK3β and Caspase 3, decreased the expression of AKT.
CONCLUSIONThe effects of curcumin on inhibiting proliferation and promoting apoptosis of EC109 cells were related with increased expression of PTEN and inhibition of PI3K/AKT signaling pathway.
Apoptosis ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Curcumin ; pharmacology ; Esophageal Neoplasms ; metabolism ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; PTEN Phosphohydrolase ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Signal Transduction
7.Effect of sulindac on improving autistic behaviors in rats.
Journal of Southern Medical University 2015;35(8):1162-1165
OBJECTIVETo test the effect of sulindac on autistic behaviors in a rat model and explore the possible mechanisms.
METHODSAutistic rat models were established by a single intraperitoneal injection of sodium valproate (VPA) at 12.5 days of pregnancy. The pregnant rats were treated with oral sulindac at a daily dose of 80 mg/kg until weaning of the newborn rats (23 days after being born), which were divided into control, VPA treatment, sulindac treatment, and VPA+ sulindac treatment groups. The social interaction and neuroethology of the newborn rats were evaluated at 35 days, and the levels of β-catenin and phosphorylated Gsk3β in the brain tissues were investigated by Western blotting.
RESULTSCompared with the control rats, the rats treated with VPA showed lower social interaction, longer moving time in central area, and reduced standing times. Treatment with sulindac alone resulted in no obvious changes in the social interaction or neuroethology of the newborn rats, but sulindac treatment corrected VPA-induced autistic-like behaviors. Sulindac also attenuated VPA-triggered p-Gsk3β downregulation and β-catenin upregulation in the prefrontal lobe, seahorse and cerebellum.
CONCLUSIONSulindac can improve the behaviors of autistic rats possibly by suppressing Wnt signaling pathway.
Animals ; Autistic Disorder ; drug therapy ; Disease Models, Animal ; Down-Regulation ; Female ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Prefrontal Cortex ; Pregnancy ; Rats ; Sulindac ; pharmacology ; Up-Regulation ; Valproic Acid ; Wnt Signaling Pathway ; beta Catenin ; metabolism
8.Effect of Meisoindigo on Wnt signal pathway in K562 and HL-60 cells.
Ming-Xin ZUO ; Yan LI ; Jian-Hua ZHOU ; Hong-Bo WANG ; Xiao-Guang CHEN
Journal of Experimental Hematology 2010;18(3):579-582
The aim of this study was to investigate the effect of meisoindigo on Wnt signal pathway in K562 cells and HL-60 cells and its possible regulatory mechanism. RT-PCR and Western blot assay were used to detect the expression of GSK-3beta and its downstream associated genes as well as proteins expression respectively. The results showed that the meisoindigo could inhibit the phosphorylation of GSK-3beta and decreased beta-catenin and c-myc genes expression in HL-60 cells, but did not significantly affect the two gene expression in K562 cells. Meisoindigo slightly increased the expression of GSK-3beta protein in HL-60 cells, obviously decreased the expression of p-GSK-3beta and c-MYC proteins in K562 cells and HL-60 cells, while meisoindigo did not affect the expression of beta-catenin in K562 cells significantly, but could decrease the expression of beta-catenin in HL-60 cells. It is concluded that the meisoindigo can affect the Wnt signal pathway through inhibiting the GSK-3beta expression and down-regulating the beta-catenin and c-MYC protein expression, which play an important role in the treatment for chronic myeloid leukemia.
Glycogen Synthase Kinase 3
;
metabolism
;
Glycogen Synthase Kinase 3 beta
;
HL-60 Cells
;
Humans
;
Indoles
;
pharmacology
;
K562 Cells
;
Proto-Oncogene Proteins c-myc
;
metabolism
;
Signal Transduction
;
drug effects
;
Wnt Proteins
;
metabolism
;
beta Catenin
;
metabolism
9.Sorafenib induces apoptosis of U937 cells via inhibiting WNT signal pathway.
Ruo-Zhi XIAO ; Yan CHEN ; Li-Lin WANG ; Xing-Xing RUAN ; Cheng-Ming HE ; Mu-Jun XIONG ; Dong-Jun LIN
Journal of Experimental Hematology 2011;19(2):353-357
This study was aimed to investigate the effect of multikinase inhibitor sorafenib on the proliferation and apoptosis of U937 cells and its possible mechanism. U937 cells were treated with different concentrations of sorafenib for 48 hours. Cell viability was determined by Cell Counting Kit-8; cell apoptosis and cell ratio in cell cycle were detected by flow cytometry with Annexin V/PI staining and PI staining respectively; expressions of GSK-3β, β-catenin and cyclin-D1 were assayed by Western blot. The results showed that the proliferation of U937 cells was inhibited by sorafenib in a dose-dependent manner (p < 0.05). Sorafenib induced cell apoptosis and cell cycle G(1)/G(0) arrest. Compared with results of Western blot before treatment, expression of inactivated GSK-3β, β-catenin and Cyclin-D1 down-regulated in a dose-dependent manner after treatment with sorafenib, this same changes were observed after up-regulation of inactivated GSK-3β by LiCl (p < 0.05). It is concluded that sorafenib inhibits the proliferation of U937 cells and induces cell apoptosis through reducing negative regulation of WNT signal pathway on inactivated GSK-3β and down-regulating β-catenin and cyclin-D1 level, which result in U937 cell cycle G(1)/G(0) arrest.
Apoptosis
;
drug effects
;
Benzenesulfonates
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Glycogen Synthase Kinase 3
;
metabolism
;
Glycogen Synthase Kinase 3 beta
;
Humans
;
Niacinamide
;
analogs & derivatives
;
Phenylurea Compounds
;
Pyridines
;
pharmacology
;
U937 Cells
;
Wnt Signaling Pathway
;
beta Catenin
;
metabolism
10.Propofol may protect PC12 cells from β-amyloid₂₅₋₃₅ induced apoptosis through the GSK-3β signaling pathway.
Rui ZHANG ; Jie XU ; Yan-Yong LIU ; Ping-Ping ZUO ; Nan YANG ; Chao JI ; Yun WANG ; Hui WANG ; An-Shi WU ; Yun YUE
Chinese Medical Journal 2013;126(10):1884-1889
BACKGROUNDThere are two major pathological hallmarks of Alzheimer's disease. One is the progressive accumulation of beta-amyloid (Aβ) in the form of senile plaques; the other is hyperphosphorylated tau, causing neuronal apoptosis. Some inhalation anesthetics, such as isoflurane and desflurane, have been suggested to induce Aβ accumulation and cause AD-like neuropathogenesis. Whether intravenous anesthetics have similar effects is still unclear. We therefore set out to determine the relationship between propofol and AD-like pathogenesis.
METHODSPC12 cells were cultured in serum-free medium for 12 hours prior to drug treatment. Various concentrations from 5 µmol/L to 80 µmol/L of aggregated Aβ25-35 were added to determine a proper concentration for further study. After exposure to 10 µmol/L Aβ25-35 alone or with 20 µmol/L propofol for 6 hours, PC12 cell viability was determined by MTT assay. Western blotting and immunocytochemical staining were performed to observe the protein expression of the Bcl-2 family, tau phosphorylation at different sites, and tau protein kinases and phosphatases.
RESULTSAβ25-35 induced a decrease in PC12 cell viability in a dose-dependent manner. Exposure to 10 µmol/L Aβ25-35 for 6 hours resulted in the mild cell survival, accompanied by a decline in Bcl-2, and an increase in phosphorylation of GSK-3β and tau at different sites. Compared with the Aβ25-35 group, cells treated with propofol alone showed no significant difference, while cells co-incubated with propofol and Aβ25-35 showed a significantly higher survival rate (P < 0.01 or P < 0.05). Tau phosphorylation at Ser396, Ser404 and Thr231 and the level of GSK-3β in PC12 cells increased after exposure to 10 µmol/L Aβ25-35. Co-incubation with propofol attenuated cellular apoptosis by inhibiting tau phosphorylation.
CONCLUSIONSThese data indicate that propofol may protect PC12 cells from Aβ25-35-induced apoptosis and tau hyperphosphorylation through the GSK-3β pathway, therefore it may be a safer anesthesia for AD and elderly patients.
Amyloid beta-Peptides ; pharmacology ; Animals ; Apoptosis ; drug effects ; Cell Survival ; drug effects ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; PC12 Cells ; Peptide Fragments ; pharmacology ; Phosphorylation ; drug effects ; Propofol ; pharmacology ; Rats ; Signal Transduction ; drug effects